If a , b and c are distinct, non-zero reals that satisfy a + b + c = 0 , what is the maximum of ( b − c a + c − a b + a − b c ) ( a b − c + b c − a + c a − b ) ?
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
The factorization a 3 + b 3 + c 3 − 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 − a b − b c − c a ) is extremely useful.
I saw this problem 4 times :)
Log in to reply
I have sent 2 twice.
a+b+c = 0; therefore replace c with -(a+b) in the given equation. the given equation would turn up in terms of a and b. Precisely, ((a/(2b+a)) - (b/(2a+b)) - ((a-b)/(a+b))) * (((2b+a)/a) - ((2a+b)/b) - ((a-b)/(a+b))).
Now divide the numerator and denominator part by b. the equation would convert in terms of a/b. Replace a/b with x. Now you have an equation in one variable.
On simplifying then onwards you will get (-9x(x+1)/((x-1)(2x+1)(2+x))) * (-((2+x)(2x+1)(x-1))/(x(x+1)))
Eventually everything would get cancelled and 9 will remain. Thus for the given problem it will have a solution of 9.
We have (abc) \neg 0 and ((a-b)(b-c)(c-a)) \neg 0
Let P = \frac {a}{b-c} + \frac {b}{c-a} + \frac {c}{a-b}
P(b-c)(c-a)(a-b) = a(c-a)(a-b) + b(b-c)(a-b) + c(b-c)(c-a) = a(c-a)(a-b) - (a+c)(b-c)(a-b) + c(b-c)(c-a) = a(c-a)(a-b) - a(b-c)(a-b) - c(b-c)(a-b) + c(b-c)(c-a) = a(a-b)(c-a-b+c) - c(b-c)(a-b-c+a) = a(a-b)(3c) - c(b-c)(3a) = 3ac(a-b-b+c) = -9abc
Let Q = \frac {b-c}{a} + \frac {c-a}{b} + \frac {a-b}{c}
Qabc = (b-c)bc + (c-a)ac + (a-b)ab = (b-c)bc + (c-b+b-a)ac + (a-b)ab = (b-c)bc + ac(c-b) + ac(b-a) + (a-b)ab = c(b-c)(b-a) + a(a-b)(b-c) = -(a-b)(b-c)(c-a)
We have: PQabc(b-c)(c-a)(a-b) = (-9abc) * (-(a-b)(b-c)(c-a)) = 9abc(b-c)(c-a)(a-b)
=> PQ = 9 (We have our answer)
After a few trials, it appears that the product is always 9. Observe that a b − c ( c − a b + a − b c ) = a b − c × ( c − a ) ( a − b ) a b − b 2 + c 2 − c a = a b − c × ( c − a ) ( a − b ) ( b − c ) ( a − b − c ) = ( c − a ) ( a − b ) ( b − c ) 2 × 2 .
Hence, the expansion is equal to 3 + 2 × ( b − c ) ( c − a ) ( a − b ) ( b − c ) 3 + ( c − a ) 3 + ( a − b ) 3 .
Let x = b − c , y = c − a and z = a − b , so x + y + z = 0 and the expression is equal to 3 + 2 × x y z x 3 + y 3 + z 3 . We have 0 3 x y z = ( x + y + z ) 3 = x 3 + y 3 + z 3 + 3 x y ( x + y + z ) + 3 x z ( x + y + z ) + 3 y z ( x + y + z ) − 3 x y z = x 3 + y 3 + z 3
Hence the value of the expression is 3 + 2 × 3 = 9 .
By AM-GM, we have
[ a / ( b − c ) + b / ( c − a ) + c / ( a − b ) ] / 3 ≥ [ a b c / ( b − c ) ( c − a ) ( a − b ) ] 1 / 3 , [ ( b − c ) / a + ( c − a ) / b + ( a − b ) / c ] / 3 ≥ [ ( b − c ) ( c − a ) ( a − b ) / a b c ] 1 / 3 .
Multiplying both terms, we get [ a / ( b − c ) + b / ( c − a ) + c / ( a − b ) ] / 3 × [ ( b − c ) / a + ( c − a ) / b + ( a − b ) / c ] / 3 ≥ 1 . This implies that [ a / ( b − c ) + b / ( c − a ) + c / ( a − b ) ] × [ ( b − c ) / a + ( c − a ) / b + ( a − b ) / c ] ≥ 9 .
What is wrong with the Arithmetic Mean -Geometric Mean solution presented below?
Log in to reply
AM-GM can only be applied for positive real numbers.
its can be solved using cauchy
Problem Loading...
Note Loading...
Set Loading...
The first step is to multiply out the expression. First lets' look at just the distribution of b − c a : b − c a ( a b − c + b c − a + c a − b ) = 1 + b − c a ( b c c 2 − a c + a b − b 2 ) = 1 + b c a ( a − c − b ) = 1 + b c 2 a 2 . Similarly, the distributions for the second and third terms will be 1 + a c 2 b 2 and 1 + a b 2 c 2 respectively, because the expression is symmetrical. Therefore, the entire expression evaluates out to 3 + ( b c 2 a 2 + a c 2 b 2 + a b 2 c 2 ) which equals 3 + 2 ( a b c a 3 + b 3 + c 3 ) .
To simplify this, we use the factorization a 3 + b 3 + c 3 − 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 − a b − b c − c a ) = 0 , hence a 3 + b 3 + c 3 = 3 a b c . Now we can substitute this back into our expression, and we get 3 + 2 ( a b c 3 a b c ) which equals 3 + 6 = 9 . Therefore, the expression always equals 9 so the maximum value is 9