Maximum Product of Sums

Algebra Level 4

If a , b a, b and c c are distinct, non-zero reals that satisfy a + b + c = 0 a + b + c =0 , what is the maximum of ( a b c + b c a + c a b ) ( b c a + c a b + a b c ) ? \left(\frac {a}{b-c} + \frac {b}{c-a} + \frac {c}{a-b} \right)\left( \frac {b-c}{a} + \frac {c-a}{b} + \frac {a-b}{c}\right)?


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Adam Dai
May 20, 2014

The first step is to multiply out the expression. First lets' look at just the distribution of a b c \frac{a}{b-c} : a b c ( b c a + c a b + a b c ) = 1 + a b c ( c 2 a c + a b b 2 b c ) = 1 + a ( a c b ) b c = 1 + 2 a 2 b c \frac{a}{b-c} (\frac {b-c}{a} + \frac {c-a}{b} + \frac {a-b}{c}) = 1 + \frac{a}{b-c} ( \frac{c^{2} - ac + ab - b^{2}}{bc}) = 1 + \frac{a(a-c-b)}{bc} = 1 + \frac {2a^2}{bc} . Similarly, the distributions for the second and third terms will be 1 + 2 b 2 a c 1+\frac{2b^{2}}{ac} and 1 + 2 c 2 a b 1+\frac{2c^{2}}{ab} respectively, because the expression is symmetrical. Therefore, the entire expression evaluates out to 3 + ( 2 a 2 b c + 2 b 2 a c + 2 c 2 a b ) 3+(\frac{2a^{2}}{bc}+\frac{2b^{2}}{ac}+\frac{2c^{2}}{ab}) which equals 3 + 2 ( a 3 + b 3 + c 3 a b c ) 3+2(\frac{a^{3}+b^{3}+c^{3}}{abc}) .

To simplify this, we use the factorization a 3 + b 3 + c 3 3 a b c = ( a + b + c ) ( a 2 + b 2 + c 2 a b b c c a ) = 0 a^3+b^3+c^3 - 3abc = (a+b+c)(a^2+b^2+c^2-ab-bc-ca)=0 , hence a 3 + b 3 + c 3 = 3 a b c a^{3}+b^{3}+c^{3}=3abc . Now we can substitute this back into our expression, and we get 3 + 2 ( 3 a b c a b c ) 3+2(\frac{3abc}{abc}) which equals 3 + 6 = 9 3+6=9 . Therefore, the expression always equals 9 9 so the maximum value is 9 9

The factorization a 3 + b 3 + c 3 3 a b c a^3+b^3+c^3 - 3abc = ( a + b + c ) ( a 2 + b 2 + c 2 a b b c c a ) = (a+b+c)(a^2+b^2+c^2-ab-bc-ca) is extremely useful.

Calvin Lin Staff - 7 years ago

I saw this problem 4 times :)

Rindell Mabunga - 6 years, 8 months ago

Log in to reply

I have sent 2 twice.

Nivedit Jain - 4 years ago

Log in to reply

Oh hahaha that's why xD

Rindell Mabunga - 4 years ago
Sumit Saurav
May 20, 2014

a+b+c = 0; therefore replace c with -(a+b) in the given equation. the given equation would turn up in terms of a and b. Precisely, ((a/(2b+a)) - (b/(2a+b)) - ((a-b)/(a+b))) * (((2b+a)/a) - ((2a+b)/b) - ((a-b)/(a+b))).

Now divide the numerator and denominator part by b. the equation would convert in terms of a/b. Replace a/b with x. Now you have an equation in one variable.

On simplifying then onwards you will get (-9x(x+1)/((x-1)(2x+1)(2+x))) * (-((2+x)(2x+1)(x-1))/(x(x+1)))

Eventually everything would get cancelled and 9 will remain. Thus for the given problem it will have a solution of 9.

Minh Pham
May 20, 2014

We have (abc) \neg 0 and ((a-b)(b-c)(c-a)) \neg 0

Let P = \frac {a}{b-c} + \frac {b}{c-a} + \frac {c}{a-b}

P(b-c)(c-a)(a-b) = a(c-a)(a-b) + b(b-c)(a-b) + c(b-c)(c-a) = a(c-a)(a-b) - (a+c)(b-c)(a-b) + c(b-c)(c-a) = a(c-a)(a-b) - a(b-c)(a-b) - c(b-c)(a-b) + c(b-c)(c-a) = a(a-b)(c-a-b+c) - c(b-c)(a-b-c+a) = a(a-b)(3c) - c(b-c)(3a) = 3ac(a-b-b+c) = -9abc

Let Q = \frac {b-c}{a} + \frac {c-a}{b} + \frac {a-b}{c}

Qabc = (b-c)bc + (c-a)ac + (a-b)ab = (b-c)bc + (c-b+b-a)ac + (a-b)ab = (b-c)bc + ac(c-b) + ac(b-a) + (a-b)ab = c(b-c)(b-a) + a(a-b)(b-c) = -(a-b)(b-c)(c-a)

We have: PQabc(b-c)(c-a)(a-b) = (-9abc) * (-(a-b)(b-c)(c-a)) = 9abc(b-c)(c-a)(a-b)

=> PQ = 9 (We have our answer)

Calvin Lin Staff
May 13, 2014

After a few trials, it appears that the product is always 9. Observe that b c a ( b c a + c a b ) = b c a × a b b 2 + c 2 c a ( c a ) ( a b ) = b c a × ( b c ) ( a b c ) ( c a ) ( a b ) = ( b c ) 2 × 2 ( c a ) ( a b ) \frac {b-c}{a} ( \frac {b}{c-a} + \frac {c}{a-b} ) = \frac {b-c}{a} \times \frac {ab-b^2+c^2-ca}{(c-a)(a-b)} = \frac {b-c}{a} \times \frac {(b-c)(a-b-c)} {(c-a)(a-b)} = \frac { (b-c)^2 \times 2} {(c-a)(a-b) } .

Hence, the expansion is equal to 3 + 2 × ( b c ) 3 + ( c a ) 3 + ( a b ) 3 ( b c ) ( c a ) ( a b ) 3 + 2 \times \frac { (b-c)^3 + (c-a)^3 + (a-b)^3} {(b-c)(c-a)(a-b) } .

Let x = b c , y = c a x = b-c, y = c-a and z = a b z = a-b , so x + y + z = 0 x+y+z=0 and the expression is equal to 3 + 2 × x 3 + y 3 + z 3 x y z 3 + 2 \times \frac{x^3+y^3+z^3}{xyz} . We have 0 = ( x + y + z ) 3 = x 3 + y 3 + z 3 + 3 x y ( x + y + z ) + 3 x z ( x + y + z ) + 3 y z ( x + y + z ) 3 x y z 3 x y z = x 3 + y 3 + z 3 \begin{aligned} 0 &= (x+y+z)^3 \\ &= x^3+y^3+z^3 + 3xy(x+y+z) + 3xz(x+y+z) + 3yz(x+y+z) - 3xyz \\ 3xyz &= x^3+y^3+z^3 \\ \end{aligned}

Hence the value of the expression is 3 + 2 × 3 = 9 3 + 2\times 3 = 9 .

Sagar Chand
May 20, 2014

By AM-GM, we have

[ a / ( b c ) + b / ( c a ) + c / ( a b ) ] / 3 [ a b c / ( b c ) ( c a ) ( a b ) ] 1 / 3 , [a/(b-c)+b/(c-a)+c/(a-b)]/3 \geq [abc/(b-c)(c-a)(a-b)]^{1/3}, [ ( b c ) / a + ( c a ) / b + ( a b ) / c ] / 3 [ ( b c ) ( c a ) ( a b ) / a b c ] 1 / 3 . [(b-c)/a+(c-a)/b+(a-b)/c]/3\geq [(b-c)(c-a)(a-b)/abc]^{1/3}.

Multiplying both terms, we get [ a / ( b c ) + b / ( c a ) + c / ( a b ) ] / 3 × [ ( b c ) / a + ( c a ) / b + ( a b ) / c ] / 3 1 [a/(b-c)+b/(c-a)+c/(a-b)]/3 \times [(b-c)/a+(c-a)/b+(a-b)/c]/3\geq 1 . This implies that [ a / ( b c ) + b / ( c a ) + c / ( a b ) ] × [ ( b c ) / a + ( c a ) / b + ( a b ) / c ] 9 [a/(b-c)+b/(c-a)+c/(a-b)] \times [(b-c)/a+(c-a)/b+(a-b)/c] \geq 9 .

What is wrong with the Arithmetic Mean -Geometric Mean solution presented below?

Calvin Lin Staff - 7 years ago

Log in to reply

AM-GM can only be applied for positive real numbers.

Christopher Boo - 6 years, 7 months ago

its can be solved using cauchy

Dev Sharma - 5 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...