Two circles with radii R 1 = 1 0 and R 2 = 7 . 5 have a common chord A B = 1 2 . Find the longest segment E F passing through point A and points E and F on the two circles.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Using the graph given by @Yurly Kazokov , the equations of the two circles are:
{ C 1 : C 2 : ( x − 8 ) 2 + y 2 = 1 0 2 ( x + 4 . 5 ) 2 + y 2 = 7 . 5 2 ⟹ y 2 = 3 6 − x 2 + 1 6 x ⟹ y 2 = 3 6 − x 2 − 9 x . . . ( 1 ) . . . ( 2 )
Let the equation of segment E F be y = m x + 6 , where m is the gradient of the line. Then y 2 = m 2 x 2 + 1 2 m x + 3 6 . Now let E ( x 2 , y 2 ) and F ( x 1 , y 1 and we have:
⎩ ⎪ ⎨ ⎪ ⎧ m 2 x 1 2 + 1 2 m x 1 + 3 6 = 3 6 − x 1 2 + 1 6 x 1 m 2 x 2 2 + 1 2 m x 2 + 3 6 = 3 6 − x 2 2 − 9 x 2 ⟹ x 1 ⟹ x 2 = m 2 + 1 1 6 − 1 2 m = m 2 + 1 − 9 − 1 2 m
Now the length of E F is given by:
∣ E F ∣ = ( x 1 − x 2 ) 2 + ( y 1 − y 2 ) 2 = ( x 1 − x 2 ) 2 + m 2 ( x 1 − y 2 ) 2 = ( x 1 − x 2 ) 1 + m 2 = m 2 + 1 1 6 − 1 2 m + 9 + 1 2 m 1 + m 2 = m 2 + 1 2 5
∣ E F ∣ is maximum when m = 0 , that is when E F is parallel to the x -axis, and ∣ E F ∣ max = 2 5 .
Thanks for attention. Solution work for any angles EBF.
Same approach!
l e t θ = ∠ C E A = ∠ C A E ⇒ ∠ E C A = 1 8 0 − 2 θ △ C A D i s r i g h t t r i a n g l e ⇒ ∠ D A F = ∠ D F A = 9 0 − θ ⇒ ∠ E C A = 2 θ
Now using Law of Cosines
\(\begin{align} \left | EA \right |^2 &= \left | CE \right |^2 + \left | CA \right |^2 - 2 \cdot \left | CE \right |\cdot \left | CA \right | \cdot {\color{blue} \cos(180 - 2 \theta)} \\ \left | EA \right |^2 &= \frac{225}{2} \left ( 1+ {\color{blue} \cos(2 \theta)} \right ) = 225\left ( \frac{1+\cos(2 \theta)}{2} \right ) = 225 \cos^2(\theta)\\ \left | EA \right | &= 15 \cos(\theta) {\color{red} \rightarrow 1} \\
\left | AF \right |^2 &= \left | AD\right |^2 + \left | FD\right |^2 - 2 \cdot \left | AD\right |\cdot \left | FD\right | \cdot \cos(2 \theta) \\ \left | AF \right |^2 &= 200\left ( 1 - \cos(2 \theta) \right ) = 400\left ( \frac{1-\cos(2 \theta)}{2} \right ) = 400\sin^2(\theta)\\ \left | EA \right | &= 20 \sin(\theta) {\color{red} \rightarrow 2} \\
\left | EF \right | &= \left | EA \right | + \left | AF \right | \\ \left | EF \right | &= 20 \sin(\theta) + 15 \cos(\theta) \\ \frac{d}{d \theta} \left | EF \right | &= 20 \cos(\theta) - 15 \sin(\theta) = 0 \\ & {\color{blue} \Rightarrow \tan(\theta)=\frac{4}{3}} \\
\frac{d^2}{d \theta^2} \left | EF \right | &= -20 \sin(\theta) - 15 \cos(\theta) < 0 {\color{blue} \ when \ 0<\theta<90} \\ & {\color{blue} \tan(\theta)=\frac{4}{3} \Rightarrow \left | EF \right | \ is \ max} \\
& \tan(\theta)=\frac{4}{3}\Rightarrow \sin(\theta) = \frac{4}{5} ;\cos(\theta) = \frac{3}{5} \\ \left | EF \right | &= 20 \sin(\theta) + 15 \cos(\theta) \\ \left | EF \right | &= 20 \cdot \frac{4}{5} + 15 \cdot \frac{3}{5} = 25 \end{align} \)
Let G be the point of intersection of A B and C D . Then, G is the midpoint of A B . Applying Pythagoras theorem on △ A C G and △ A D G we find that C G = 4 . 5 and G D = 8 , thus C D = 1 2 . 5 .
Let C H , D I be the apothems of the cords E A , A F respectively and C J ⊥ D I .
Suppose E F is not parallel to C D . Then, E F = 2 H I = 2 C J < 2 C D ⟹ E F < 2 5 .
In case E F ∥ C D , △ C D J degenerates into the line segment C D and E F = 2 C D = 2 5 .
Hence, the longest segment E F is the one that is parallel to the diacenter C D and its length is 2 5 .
Horizontal segment is found to have maximum length as on both other sides the length reduces. Take a line y=mx +b passing through point A and calculate
EF=2CD/(1+m^2)^0.5
EF_Max=2CD, for this problem CD=12.5
Answer is 25
The question didn't give any significant coordinates for E and F points.That means wherever you rotate it, the length of the given EF line must remain same. By this method rotate the line to make it parallel to x-axis.Now you can calculate it easily.
Problem Loading...
Note Loading...
Set Loading...
Here B E 2 + B F 2 = E F 2 - and max E F for B E = 2 r 1 = 1 5 and B F = 2 r 2 = 2 0 . Answer 1 5 2 + 2 0 2 = 2 5 .