Maximum segment for circles points

Geometry Level 4

Two circles with radii R 1 = 10 R_1=10 and R 2 = 7.5 R_2=7.5 have a common chord A B = 12 AB = 12 . Find the longest segment E F EF passing through point A A and points E E and F F on the two circles.


The answer is 25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

6 solutions

Yuriy Kazakov
May 3, 2020

Here B E 2 + B F 2 = E F 2 BE^2+BF^2=EF^2 - and max E F EF for B E = 2 r 1 = 15 BE=2r_1=15 and B F = 2 r 2 = 20 BF=2r_2=20 . Answer 1 5 2 + 2 0 2 = 25 \sqrt{15^2+20^2}=25 .

Using the graph given by @Yurly Kazokov , the equations of the two circles are:

{ C 1 : ( x 8 ) 2 + y 2 = 1 0 2 y 2 = 36 x 2 + 16 x . . . ( 1 ) C 2 : ( x + 4.5 ) 2 + y 2 = 7. 5 2 y 2 = 36 x 2 9 x . . . ( 2 ) \begin{cases} C_1: & (x-8)^2 + y^2 = 10^2 & \implies y^2 = 36 - x^2 + 16x & ...(1) \\ C_2: & (x+4.5)^2 + y^2 = 7.5^2 & \implies y^2 = 36 - x^2 - 9x & ...(2) \end{cases}

Let the equation of segment E F EF be y = m x + 6 y = mx + 6 , where m m is the gradient of the line. Then y 2 = m 2 x 2 + 12 m x + 36 y^2 = m^2x^2 + 12mx + 36 . Now let E ( x 2 , y 2 ) E(x_2,y_2) and F ( x 1 , y 1 F(x_1,y_1 and we have:

{ m 2 x 1 2 + 12 m x 1 + 36 = 36 x 1 2 + 16 x 1 x 1 = 16 12 m m 2 + 1 m 2 x 2 2 + 12 m x 2 + 36 = 36 x 2 2 9 x 2 x 2 = 9 12 m m 2 + 1 \begin{cases} m^2x_1^2 + 12mx_1 + 36 = 36 - x_1^2 + 16x_1 & \implies x_1 & = \dfrac {16-12m}{m^2+1} \\ m^2x_2^2 + 12mx_2 + 36 = 36 - x_2^2 - 9x_2 & \implies x_2 & = \dfrac {-9-12m}{m^2+1} \end{cases}

Now the length of E F EF is given by:

E F = ( x 1 x 2 ) 2 + ( y 1 y 2 ) 2 = ( x 1 x 2 ) 2 + m 2 ( x 1 y 2 ) 2 = ( x 1 x 2 ) 1 + m 2 = 16 12 m + 9 + 12 m m 2 + 1 1 + m 2 = 25 m 2 + 1 \begin{aligned} |EF| & = \sqrt{(x_1-x_2)^2 + (y_1-y_2)^2} = \sqrt{(x_1-x_2)^2 + m^2(x_1-y_2)^2} \\ & = (x_1-x_2)\sqrt{1+m^2} = \frac {16-12m +9 + 12m}{m^2+1} \sqrt{1+m^2} \\ & = \frac {25}{\sqrt{m^2+1}} \end{aligned}

E F |EF| is maximum when m = 0 m=0 , that is when E F EF is parallel to the x x -axis, and E F max = 25 |EF|_{\text{max}} = \boxed{25} .

Thanks for attention. Solution work for any angles EBF.

Yuriy Kazakov - 1 year, 1 month ago

Log in to reply

You are welcome.

Chew-Seong Cheong - 1 year, 1 month ago

Same approach!

Guilherme Niedu - 1 year, 1 month ago
Hassan Abdulla
May 3, 2020

l e t θ = C E A = C A E E C A = 180 2 θ C A D i s r i g h t t r i a n g l e D A F = D F A = 90 θ E C A = 2 θ let \ \theta = \angle CEA = \angle CAE \\ {\color{#D61F06} \Rightarrow \angle ECA = 180 - 2 \theta} \\ \triangle CAD \ is \ right \ triangle \Rightarrow \angle DAF = \angle DFA = 90 - \theta \\ {\color{#D61F06} \Rightarrow \angle ECA = 2 \theta}

Now using Law of Cosines

\(\begin{align} \left | EA \right |^2 &= \left | CE \right |^2 + \left | CA \right |^2 - 2 \cdot \left | CE \right |\cdot \left | CA \right | \cdot {\color{blue} \cos(180 - 2 \theta)} \\ \left | EA \right |^2 &= \frac{225}{2} \left ( 1+ {\color{blue} \cos(2 \theta)} \right ) = 225\left ( \frac{1+\cos(2 \theta)}{2} \right ) = 225 \cos^2(\theta)\\ \left | EA \right | &= 15 \cos(\theta) {\color{red} \rightarrow 1} \\

\left | AF \right |^2 &= \left | AD\right |^2 + \left | FD\right |^2 - 2 \cdot \left | AD\right |\cdot \left | FD\right | \cdot \cos(2 \theta) \\ \left | AF \right |^2 &= 200\left ( 1 - \cos(2 \theta) \right ) = 400\left ( \frac{1-\cos(2 \theta)}{2} \right ) = 400\sin^2(\theta)\\ \left | EA \right | &= 20 \sin(\theta) {\color{red} \rightarrow 2} \\

\left | EF \right | &= \left | EA \right | + \left | AF \right | \\ \left | EF \right | &= 20 \sin(\theta) + 15 \cos(\theta) \\ \frac{d}{d \theta} \left | EF \right | &= 20 \cos(\theta) - 15 \sin(\theta) = 0 \\ & {\color{blue} \Rightarrow \tan(\theta)=\frac{4}{3}} \\

\frac{d^2}{d \theta^2} \left | EF \right | &= -20 \sin(\theta) - 15 \cos(\theta) < 0 {\color{blue} \ when \ 0<\theta<90} \\ & {\color{blue} \tan(\theta)=\frac{4}{3} \Rightarrow \left | EF \right | \ is \ max} \\

& \tan(\theta)=\frac{4}{3}\Rightarrow \sin(\theta) = \frac{4}{5} ;\cos(\theta) = \frac{3}{5} \\ \left | EF \right | &= 20 \sin(\theta) + 15 \cos(\theta) \\ \left | EF \right | &= 20 \cdot \frac{4}{5} + 15 \cdot \frac{3}{5} = 25 \end{align} \)

Let G G be the point of intersection of A B AB and C D CD . Then, G G is the midpoint of A B AB . Applying Pythagoras theorem on A C G \triangle ACG and A D G \triangle ADG we find that C G = 4.5 CG=4.5 and G D = 8 GD=8 , thus C D = 12.5 CD=12.5 .

Let C H CH , D I DI be the apothems of the cords E A EA , A F AF respectively and C J D I CJ\bot DI .

\ \

Suppose E F EF is not parallel to C D CD . Then, E F = 2 H I = 2 C J < 2 C D E F < 25. EF=2HI=2CJ<2CD\implies EF<25.

\ \

In case E F C D EF\parallel CD , C D J \triangle CDJ degenerates into the line segment C D CD and E F = 2 C D = 25. EF=2CD=25.

\ \

Hence, the longest segment E F EF is the one that is parallel to the diacenter C D CD and its length is 25 . \boxed{25}.

Vinod Kumar
May 7, 2020

Horizontal segment is found to have maximum length as on both other sides the length reduces. Take a line y=mx +b passing through point A and calculate

EF=2CD/(1+m^2)^0.5

EF_Max=2CD, for this problem CD=12.5

Answer is 25

Bertan Turgut
May 5, 2020

The question didn't give any significant coordinates for E and F points.That means wherever you rotate it, the length of the given EF line must remain same. By this method rotate the line to make it parallel to x-axis.Now you can calculate it easily.

1 pending report

Vote up reports you agree with

×

Problem Loading...

Note Loading...

Set Loading...