Maximum squarelength triangle vector

Geometry Level pending

Point A A lies on circle x 2 + y 2 = 5 2 x^2+y^2=5^2 , point B B lies on circle x 2 + y 2 = 4 2 x^2+y^2=4^2 and C C lies on circle x 2 + y 2 = 3 2 x^2+y^2=3^2 . Find the maximum of A B 2 + A C 2 + B C 2 AB^2+AC^2+BC^2 .


The answer is 150.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Let O O be the origin of coordinates, A O B = α , B O C = β , C O A = 2 π ( α + β ) \angle {AOB}=α, \angle {BOC}=β, \angle {COA}=2π-(α+β) . Then

l = A B 2 + B C 2 + C A 2 = 100 40 cos α 24 cos β + 30 cos ( α + β ) l=|\overline {AB}|^2+|\overline {BC}|^2+|\overline {CA}|^2=100-40\cos α-24\cos β+30\cos (α+β) .

This will be maximum when

l α = 0 , l β = 0 40 sin α = 30 sin ( α + β ) , 24 sin β = 30 sin ( α + β ) sin β = 5 3 sin α , cos α = 4 5 , cos β = 0 , cos ( α + β ) = 3 5 \dfrac{\partial l}{\partial α}=0, \dfrac{\partial l}{\partial β}=0\implies 40\sin α=30\sin (α+β), 24\sin β=30\sin (α+β)\implies \sin β=\dfrac{5}{3}\sin α, \cos α=-\dfrac{4}{5}, \cos β=0, \cos (α+β)=\dfrac{3}{5} and so

l m a x = 100 + 40 × 4 5 + 30 × 3 5 = 150 l_{max}=100+40\times \dfrac{4}{5}+30\times \dfrac{3}{5}=\boxed {150} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...