Maximum surface area of a variable polyhedron

Geometry Level 3

A variable polyhedron is constructed from a square of side length 10 10 , by rotating (copies of) its center about each of its four sides by the same angle, and then generating the convex polyhedron connecting the resulting vertices, as shown in the above animation. Find the maximum possible surface area of this variable polyhedron.


The answer is 441.42.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Oct 22, 2020

The surface area A A of the polyhedron only depends on the side length of the top square x x . It has a minimum of 200 200 when x = 0 x=0 . The additional surface area is the square on top x 2 x^2 and the area of the four slanting triangles which we can find using Heron's formula , where its semi-perimeter s = 5 2 + 5 2 + x 2 = 5 2 + x 2 s = \frac {5\sqrt 2+5\sqrt 2+x}2 = 5\sqrt 2 + \frac x2 . The surface area A A is given by:

A = x 2 + 4 ( 5 2 + x 2 ) ( 5 2 x 2 ) ( x 2 ) 2 + 200 = x 2 + x 200 x 2 + 200 To find max ( A ) d A d x = 2 x + 200 x 2 x 3 x 200 x 2 = 2 x 200 x 2 + 200 2 x 2 200 x 2 Putting d A d x = 0 \begin{aligned} A & = x^2 + 4\sqrt{\left(5\sqrt 2 + \frac x2\right)\left(5\sqrt 2 - \frac x2\right)\left(\frac x2\right)^2} + 200 \\ & = x^2 + x \sqrt{200-x^2} + 200 & \small \blue{\text{To find }\max(A)} \\ \frac {dA}{dx} & = 2x + \frac {200x - 2x^3}{x\sqrt{200-x^2}} \\ & = \frac {2x\sqrt{200-x^2}+200-2x^2}{\sqrt{200-x^2}} & \small \blue{\text{Putting }\frac {dA}{dx} = 0} \end{aligned}

2 x 200 x 2 = 2 x 2 200 x 200 x 2 = x 2 100 200 x 2 x 4 = x 4 200 x 2 + 10000 2 x 4 400 x 2 + 10000 = 0 x 4 200 x 2 + 5000 = 0 \begin{aligned} 2x\sqrt{200-x^2} & = 2x^2 - 200 \\ x\sqrt{200-x^2} & = x^2 - 100 \\ 200x^2 - x^4 & = x^4 - 200x^2 + 10000 \\ 2x^4 - 400x^2 + 10000 & = 0 \\ x^4 - 200x^2 + 5000 & = 0 \end{aligned}

x 2 = ± 20 0 2 4 ( 5000 ) + 200 2 = ± 50 2 + 100 = 100 ( 1 + 1 2 ) 100 50 2 is too small. x = 10 1 + 1 2 \begin{aligned} \implies x^2 & = \frac {\pm \sqrt{200^2 - 4(5000)}+200}2 = \pm 50\sqrt 2 + 100 \\ & = 100\left(1+\frac 1{\sqrt 2} \right) & \small \blue{100 - 50\sqrt 2 \text{ is too small.}} \\ x & = 10 \sqrt{1+\frac 1{\sqrt 2}} \end{aligned}

A max = 100 ( 1 + 1 2 ) + 10 1 + 1 2 200 50 2 100 + 200 = 200 + 50 2 + 10 1 + 1 2 100 50 2 = 300 + 100 2 + 10 1 + 1 2 10 1 1 2 = 300 + 100 2 + 100 2 = 300 + 100 2 441.42 \begin{aligned} \implies A_{\max} & = 100\left(1+\frac 1{\sqrt 2}\right) + 10 \sqrt{1+\frac 1{\sqrt 2}}\cdot \sqrt{200-50\sqrt 2 - 100} + 200 \\ & = 200 + 50 \sqrt 2 + 10 \sqrt{1+\frac 1{\sqrt 2}}\cdot \sqrt{100-50\sqrt 2} \\ & = 300 + \frac {100}{\sqrt 2} + 10 \sqrt{1+\frac 1{\sqrt 2}}\cdot 10 \sqrt{1-\frac 1{\sqrt 2}} \\ & = 300 + \frac {100}{\sqrt 2} + \frac {100}{\sqrt 2} = 300 + 100\sqrt 2 \\ & \approx \boxed{441.42} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...