Maximum Triangle Area within an Ellipse

Geometry Level 3

Given the ellipse:

x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1

where a > 0 a > 0 and b > 0 b > 0 , three points ( x 1 , y 1 ) (x_1, y_1) , ( x 2 , y 2 ) (x_2, y_2) , and ( x 3 , y 3 ) (x_3, y_3) are chosen to lie on it. What is the maximum area of the triangle formed by these three points?

( 2 5 / 5 ) a b (2 \sqrt{5} / 5) a b ( 3 3 / 4 ) a b (3 \sqrt{3} / 4) a b ( a 2 + b 2 ) / 2 (a^2 + b^2 ) / 2 a b / 2 a b / 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Michael Mendrin
Jan 28, 2016

The area of an equilateral triangle in an unit circle is 3 3 4 \frac{3\sqrt{3}}{4} , which has the maximum area of any such circumscribed triangle. Scale both independently in orthogonal directions by a a and b b to get the answer for an ellipse of semi-axes a , b a, b . Orientation of the equilateral triangle does not matter.

Excellent argument. Thank you.

Hosam Hajjir - 5 years, 4 months ago

Why does this work? I mean I understand the intuitive reasoning, and I assume this is equivalent to the use of change of variable when integrating in calculus, the thing is, that when you do it, you usually use the jacobian as a "scale factor"

Cristian Alvarez Bran - 3 years, 11 months ago
Rohit Ner
Jan 28, 2016

As suggested by @Michael Mendrin , let ( a , 0 ) , ( a cos θ , b sin θ ) (a,0),(a\cos\theta,b\sin\theta) and ( a cos θ , b sin θ ) (a\cos\theta,-b\sin\theta) be the vertices of the triangle lying on the ellipse.
Δ ( θ ) = 1 2 a 0 1 a cos θ b sin θ 1 a cos θ b sin θ 1 = a b sin θ ( cos θ 1 ) Δ ( θ ) = a b [ sin θ ( sin θ ) + cos θ ( cos θ 1 ) ] = a b ( cos 2 θ sin 2 θ cos θ ) = a b ( cos 2 θ cos θ ) = 0 ...(maximum value) cos 2 θ = cos θ θ = 2 π 3 , Δ ( 2 π 3 ) = a b ( 3 2 ) ( 1 2 1 ) = 3 3 4 a b \begin{aligned}\Delta(\theta)&=\frac{1}{2}\left|\left| \begin{matrix} a & 0 & 1 \\ a\cos { \theta } & b\sin { \theta } & 1 \\ a\cos { \theta } & -b\sin { \theta } & 1 \end{matrix} \right| \right|\\&=ab\sin\theta(\cos\theta-1)\\{\Delta}^{'}(\theta)&=ab\left[ \sin { \theta } \left( -\sin { \theta } \right) +\cos { \theta } \left( \cos { \theta }-1 \right) \right] \\&=ab\left( \cos ^{ 2 }{ \theta } -\sin ^{ 2 }{ \theta } -\cos { \theta } \right) \\&=ab\left( \cos { 2\theta } -\cos { \theta } \right)=0 \text{...(maximum value)}\\\cos{2\theta}&=\cos\theta \\\theta&=\frac{2\pi}{3},\not{0}\\ \Delta\left(\frac{2\pi}{3}\right)&=ab\left|\left( \frac { \sqrt { 3 } }{ 2 } \right) \left( \frac { 1 }{ 2 } -1 \right)\right| \\&\huge\color{#3D99F6}{=\boxed{\frac{3\sqrt{3}}{4}ab}}\end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...