Let x , y , z are non-zero finite real numbers. Now, consider the following expression S = ( x + y ) 2 + z 2 ( x + y − z ) 2 + ( y + z ) 2 + x 2 ( y + z − x ) 2 + ( z + x ) 2 + y 2 ( z + x − y ) 2
Let, the maximum value of S is S 0 and it occurs at x = x 0 , y = y 0 , z = z 0 .
Find the value of ( S 0 + x 0 + y 0 + z 0 ) .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
|
Problem Loading...
Note Loading...
Set Loading...
( x + y ) 2 + z 2 ( x + y − z ) 2 = ( x + y ) 2 + z 2 ( x + y − z ) 2 + ( x + y + z ) 2 − ( x + y ) 2 + z 2 ( x + y + z ) 2 = ( x + y ) 2 + z 2 2 [ ( x + y ) 2 + z 2 ] − ( x + y ) 2 + z 2 ( x + y + z ) 2 = 2 − ( x + y ) 2 + z 2 ( x + y + z ) 2 ⟹ S = 6 − ( x + y + z ) 2 [ ( x + y ) 2 + z 2 1 + ( y + z ) 2 + x 2 1 + ( z + x ) 2 + y 2 1 ]
Now, let T = ( x + y + z ) 2 [ ( x + y ) 2 + z 2 1 + ( y + z ) 2 + x 2 1 + ( z + x ) 2 + y 2 1 ] .
Then S is maximum if T is minimum.
Again, as x , y , z are non-zero finite real numbers and T contains sum of squares, so T ≥ 0 .
Hence, the minimum value of T is 0 and it occurs for x 0 + y 0 + z 0 = 0 .
Thus, S 0 = 6 and S 0 + x 0 + y 0 + z 0 = 6