Maximum value

Algebra Level 5

Let x , y , z x,y,z are non-zero finite real numbers. Now, consider the following expression S = ( x + y z ) 2 ( x + y ) 2 + z 2 + ( y + z x ) 2 ( y + z ) 2 + x 2 + ( z + x y ) 2 ( z + x ) 2 + y 2 S=\frac{(x+y-z)^2}{(x+y)^2+z^2}+\frac{(y+z-x)^2}{(y+z)^2+x^2}+\frac{(z+x-y)^2}{(z+x)^2+y^2}

Let, the maximum value of S S is S 0 S_0 and it occurs at x = x 0 , y = y 0 , z = z 0 x=x_0,\, y=y_0,\, z=z_0 .

Find the value of ( S 0 + x 0 + y 0 + z 0 ) \big(S_0+x_0+y_0+z_0\big) .


The answer is 6.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Anirban Karan
Apr 22, 2017

( x + y z ) 2 ( x + y ) 2 + z 2 = ( x + y z ) 2 + ( x + y + z ) 2 ( x + y ) 2 + z 2 ( x + y + z ) 2 ( x + y ) 2 + z 2 = 2 [ ( x + y ) 2 + z 2 ] ( x + y ) 2 + z 2 ( x + y + z ) 2 ( x + y ) 2 + z 2 = 2 ( x + y + z ) 2 ( x + y ) 2 + z 2 \begin{aligned}\frac{(x+y-z)^2}{(x+y)^2+z^2}&=\frac{(x+y-z)^2+(x+y+z)^2}{(x+y)^2+z^2}-\frac{(x+y+z)^2}{(x+y)^2+z^2}&\\ &=\frac{2[(x+y)^2+z^2]}{(x+y)^2+z^2}-\frac{(x+y+z)^2}{(x+y)^2+z^2}&\\ &=2-\frac{(x+y+z)^2}{(x+y)^2+z^2}\end{aligned} S = 6 ( x + y + z ) 2 [ 1 ( x + y ) 2 + z 2 + 1 ( y + z ) 2 + x 2 + 1 ( z + x ) 2 + y 2 ] \implies S=6-(x+y+z)^2\Bigg[\frac{1}{(x+y)^2+z^2}+\frac{1}{(y+z)^2+x^2}+\frac{1}{(z+x)^2+y^2}\Bigg]

Now, let T = ( x + y + z ) 2 [ 1 ( x + y ) 2 + z 2 + 1 ( y + z ) 2 + x 2 + 1 ( z + x ) 2 + y 2 ] \displaystyle T=(x+y+z)^2\Bigg[\frac{1}{(x+y)^2+z^2}+\frac{1}{(y+z)^2+x^2}+\frac{1}{(z+x)^2+y^2}\Bigg] .

Then S S is maximum if T T is minimum.

Again, as x , y , z x,y,z are non-zero finite real numbers and T T contains sum of squares, so T 0 T\geq 0 .

Hence, the minimum value of T T is 0 and it occurs for x 0 + y 0 + z 0 = 0 x_0+y_0+z_0=0 .

Thus, S 0 = 6 S_0=6 and S 0 + x 0 + y 0 + z 0 = 6 \boxed{S_0+x_0+y_0+z_0=6}

Frank Petiprin
Oct 10, 2017
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import numpy as np
#Pythonista Program ran on Ipad 2

def findval(a,b,c):
    val1=(a+b-c)**2/((a+b)**2+c**2)
    val2=(b+c-a)**2/((b+c)**2+a**2)
    val3=(c+a-b)**2/((c+a)**2+b**2)
    val=val1+val2+val3
    return val
#: starter for first max found
max=-10000
#: Increment within intervals can be varied. 1.00,  0.5, 0.125, 0.0625 
incr=.25
#: Interval-1 [-10,10] can vary 
slef1,srig1=-10,10
#: Interval-2 [-10,10]
slef2,srig2=-10,10
#:Interval-3 [-10,10]
slef3,srig3=-10,10
lef3=slef3
while(lef3<=srig3):
    lef2=slef2
    while (lef2<=srig2):
      lef1=slef1
      while (lef1<=srig1):
        x,y,z=lef3,lef2,lef1  
        if(((x!=0)and(y!=0)and(z!=0))):
          Sval=findval(x,y,z)
          if(Sval>max):
            max=Sval
            sax,say,saz=x,y,z
        lef1=lef1+incr
      lef2=lef2+incr
    lef3=lef3+incr
print('three x,y,z intervals are the same,','[',slef1,',',srig1,']')
print('increment on intervals = ',incr)
print('maximum =', max,'x y z', sax, say, saz)
print('halt++++++++++++++++++++++++++++++++++++++')
#THREE PROGRAM RUNS

the three x,y,z intervals are the same, [ -1 , 1 ]
increment on the intervals =  0.25
maximum = 6.0. x  y  z  -1  0.25.  0.75

halt++++++++++++++++++++++++++++++++++++++

the three x,y,z intervals are the same, [ -5 , 5 ]
increment on the intervals =  0.25
maximum = 6.0  x y z  -5  0.25  4.75

halt++++++++++++++++++++++++++++++++++++++

the three x,y,z intervals are the same, [ -10 , 10 ]
increment on the intervals =  0.25
maximum = 6.0  x  y  z   -10   0.25.  9.75

halt++++++++++++++++++++++++++++++++++++++ 

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...