Maximum value

Level 2

The maximum value of the expression 2 sin x + 4 cos x + 3 2\sin x + 4\cos x + 3 can be expressed as a b + c a\sqrt{b} + c , where a a , b b and c c are natural numbers. Find a + b + c a+b+c .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kenny Lau
Jan 3, 2014

The maximum of 2 sin x + 4 cos x + 3 2\sin x+4\cos x+3 occurs whenever d d x ( 2 sin x + 4 cos x + 3 ) = 0 \frac d{dx}(2\sin x+4\cos x+3)=0 . d d x ( 2 sin x + 4 cos x + 3 ) = 0 2 cos x 4 sin x = 0 cos x = 2 sin x tan x = 0.5 \begin{array}{rcl} \frac d{dx}(2\sin x+4\cos x+3)&=&0\\ 2\cos x-4\sin x&=&0\\ \cos x&=&2\sin x\\ \tan x&=&0.5 \end{array} In this photo , we can see that whenever tan x = 0.5 \tan x=0.5 , sin x = 1 5 \sin x=\frac1{\sqrt5} and cos x = 2 5 \cos x=\frac2{\sqrt5} .

Therefore, 2 sin x + 4 cos x + 3 = 2 5 + 8 5 + 3 = 10 5 + 3 = 2 5 + 3 2\sin x+4\cos x+3=\frac2{\sqrt5}+\frac8{\sqrt5}+3=\frac{10}{\sqrt5}+3=2\sqrt5+3

The solution is therefore 2+5+3 which is equal to 10 \boxed{10} .


Le maximum de 2 sin x + 4 cos x + 3 2\sin x+4\cos x+3 se produit quand d d x ( 2 sin x + 4 cos x + 3 ) = 0 \frac d{dx}(2\sin x+4\cos x+3)=0 . d d x ( 2 sin x + 4 cos x + 3 ) = 0 2 cos x 4 sin x = 0 cos x = 2 sin x tan x = 0.5 \begin{array}{rcl} \frac d{dx}(2\sin x+4\cos x+3)&=&0\\ 2\cos x-4\sin x&=&0\\ \cos x&=&2\sin x\\ \tan x&=&0.5 \end{array} Dans cette photo , on peut voir que quand tan x = 0.5 \tan x=0.5 , sin x = 1 5 \sin x=\frac1{\sqrt5} et cos x = 2 5 \cos x=\frac2{\sqrt5} .

2 sin x + 4 cos x + 3 2\sin x+4\cos x+3 est donc 2 5 + 8 5 + 3 = 10 5 + 3 = 2 5 + 3 \frac2{\sqrt5}+\frac8{\sqrt5}+3=\frac{10}{\sqrt5}+3=2\sqrt5+3

La réponse est donc 2+5+3 qui est égale à 10 \boxed{10} .

You could also solve for x x from cos x = 2 sin x \cos x = 2 \sin x with the identity sin 2 x + cos 2 x = 1 \sin^2 x + \cos^2 x = 1 .

Josh Petrin - 7 years, 5 months ago

Log in to reply

Thanks :)

Kenny Lau - 7 years, 5 months ago

Yes, that would be easier. :)

Akshat Jain - 7 years, 5 months ago

Log in to reply

More simply, from Cauchy Schwartz inequality, 2 sin x + 4 cos x ( 2 2 + 4 2 ) ( sin 2 x + cos 2 x ) = 2 5 \begin{array}{lcl} 2 \sin x + 4 \cos x &\leq& \sqrt{\left ( 2^2+4^2 \right ) \left ( \sin^2 x + \cos^2 x \right )} \\ &= & 2 \sqrt{5} \end{array} Equality holds when sin x cos x = 2 4 = 1 2 \frac{ \sin x}{\cos x}= \frac{2}{4} = \frac{1}{2} x = tan 1 ( 1 2 ) \implies x= \tan^{-1} \left ( \frac{1}{2} \right )

Sreejato Bhattacharya - 7 years, 5 months ago

Nice idea of differentiation, Kenny. :)

Akshat Jain - 7 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...