The maximum value of the expression 2 sin x + 4 cos x + 3 can be expressed as a b + c , where a , b and c are natural numbers. Find a + b + c .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
You could also solve for x from cos x = 2 sin x with the identity sin 2 x + cos 2 x = 1 .
Log in to reply
Thanks :)
Yes, that would be easier. :)
Log in to reply
More simply, from Cauchy Schwartz inequality, 2 sin x + 4 cos x ≤ = ( 2 2 + 4 2 ) ( sin 2 x + cos 2 x ) 2 5 Equality holds when cos x sin x = 4 2 = 2 1 ⟹ x = tan − 1 ( 2 1 )
Nice idea of differentiation, Kenny. :)
Problem Loading...
Note Loading...
Set Loading...
The maximum of 2 sin x + 4 cos x + 3 occurs whenever d x d ( 2 sin x + 4 cos x + 3 ) = 0 . d x d ( 2 sin x + 4 cos x + 3 ) 2 cos x − 4 sin x cos x tan x = = = = 0 0 2 sin x 0 . 5 In this photo , we can see that whenever tan x = 0 . 5 , sin x = 5 1 and cos x = 5 2 .
Therefore, 2 sin x + 4 cos x + 3 = 5 2 + 5 8 + 3 = 5 1 0 + 3 = 2 5 + 3
The solution is therefore 2+5+3 which is equal to 1 0 .
Le maximum de 2 sin x + 4 cos x + 3 se produit quand d x d ( 2 sin x + 4 cos x + 3 ) = 0 . d x d ( 2 sin x + 4 cos x + 3 ) 2 cos x − 4 sin x cos x tan x = = = = 0 0 2 sin x 0 . 5 Dans cette photo , on peut voir que quand tan x = 0 . 5 , sin x = 5 1 et cos x = 5 2 .
2 sin x + 4 cos x + 3 est donc 5 2 + 5 8 + 3 = 5 1 0 + 3 = 2 5 + 3
La réponse est donc 2+5+3 qui est égale à 1 0 .