( 7 cos x + 2 4 sin x ) ( 7 sin x − 2 4 cos x )
Find the maximum value of this expression over all real values x .
Hint:
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Great use of the R-method! Bonus question: For the sake of variety, can you solve this via calculus?
We can expand the expression:
4 9 sin x cos x − 1 6 8 cos 2 x + 1 6 8 sin 2 x − 5 7 6 sin x cos x − 5 2 7 sin x cos x − 1 6 8 ( cos 2 x − sin 2 x )
Now, use sin ( 2 x ) = 2 sin x cos x and cos ( 2 x ) = cos 2 x − sin 2 x :
− 2 5 2 7 sin ( 2 x ) − 1 6 8 cos ( 2 x )
Finally, using Cauchy-Schwarz inequality:
− 2 5 2 7 sin ( 2 x ) − 1 6 8 cos ( 2 x ) ≤ ( ( − 2 5 2 7 ) 2 + ( − 1 6 8 ) 2 ) ( sin 2 ( 2 x ) + cos 2 ( 2 x ) ) ≤ 4 2 7 7 7 2 9 + 2 8 2 2 4 ≤ 4 3 9 0 6 2 5 ≤ 2 6 2 5
We can generalize it, by finding the maximun of ( a cos x + b sin x ) ( a sin x − b cos x ) :
a 2 sin x cos x − a b cos 2 x + a b sin 2 x − b 2 sin x cos x ( a 2 − b 2 ) sin x cos x − a b ( cos 2 x − sin 2 x ) 2 a 2 − b 2 sin ( 2 x ) − a b cos ( 2 x ) ≤ ( ( 2 a 2 − b 2 ) 2 + ( − a b ) 2 ) ( sin 2 ( 2 x ) + cos 2 ( 2 x ) ) ≤ 4 a 4 − 2 a 2 b 2 + b 4 + 4 a 2 b 2 ≤ 2 ( a 2 + b 2 ) 2
Since we want a maximum, we take the positive value:
≤ 2 a 2 + b 2
Great eye for spotting Cauchy-Schwarz inequality . Wonderful generalization as well.
Fantastic work!
Here's a calculus approach.
Consider the general expression f ( x ) = ( a cos x + b sin x ) ( a sin x − b cos x ) for real constants a , b .
For simplicity sake, let S = sin x , C = cos x , T = tan x . Applying product rule shows that f ′ ( x ) = ( a C + b S ) 2 − ( a S − b C ) 2 .
At the turning point, f ′ ( x ) = 0 , then a C + b S = ± ( a S − b C ) , equivalently T = C S = a − b a + b , − a + b a − b .
Substitute this value into f ( x ) ,
f ( x ) = = = ( a + b T ) ( a T − b ) cos 2 T ( a + b T ) ( a T − b ) ⋅ tan 2 x + 1 1 T 2 + 1 1 ( a + b T ) ( a T − b )
With a little bit of simplification, we get the extremal points of f ( x ) as ± 2 a 2 + b 2 .
In this case, a = 7 , b = 2 4 ⇒ max ( f ( x ) ) = 2 a 2 + b 2 = 3 1 2 . 5 .
"With a little bit of simplification" is an understatement. Unorthodox approach nonetheless.
Problem Loading...
Note Loading...
Set Loading...
Let f ( x ) = ( 7 cos x + 2 4 sin x ) ( 7 sin x − 2 4 cos x )
⇒ f ( x ) = 2 5 2 ( 2 5 7 cos x + 2 5 2 4 sin x ) ( 2 5 7 sin x − 2 5 2 4 cos x ) = − 6 2 5 sin ( x + tan − 1 2 4 7 ) cos ( x + tan − 1 2 4 7 ) = − 3 1 2 . 5 sin ( 2 [ x + tan − 1 2 4 7 ] )
⇒ f ( x ) is maximum, when sin ( 2 [ x + tan − 1 2 4 7 ] ) = − 1 and f m a x ( x ) = 3 1 2 . 5