Maximum how?

Geometry Level 2

( 7 cos x + 24 sin x ) ( 7 sin x 24 cos x ) \large (7\cos x+24\sin x)(7\sin x-24\cos x)

Find the maximum value of this expression over all real values x . x.


Hint:

156.25 25 312.5 625

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Chew-Seong Cheong
May 24, 2015

Let f ( x ) = ( 7 cos x + 24 sin x ) ( 7 sin x 24 cos x ) f(x) = (7\cos{x} + 24\sin{x}) (7\sin{x} - 24\cos{x})

f ( x ) = 2 5 2 ( 7 25 cos x + 24 25 sin x ) ( 7 25 sin x 24 25 cos x ) = 625 sin ( x + tan 1 7 24 ) cos ( x + tan 1 7 24 ) = 312.5 sin ( 2 [ x + tan 1 7 24 ] ) \begin{aligned} \Rightarrow f(x) & = 25^2\left(\frac{7}{25}\cos{x} + \frac{24}{25}\sin{x}\right) \left(\frac{7}{25}\sin{x} - \frac{24}{25}\cos{x}\right) \\ & = -625 \sin{\left(x+\tan^{-1}{\frac{7}{24}}\right)} \cos{\left(x+\tan^{-1}{\frac{7}{24}}\right)} \\& = - 312.5 \sin{\left( 2 \left[ x+\tan^{-1}{\frac{7}{24}}\right] \right)} \end{aligned}

f ( x ) \Rightarrow f(x) is maximum, when sin ( 2 [ x + tan 1 7 24 ] ) = 1 \sin{\left( 2 \left[ x+\tan^{-1}{\frac{7}{24}}\right] \right)} = -1 and f m a x ( x ) = 312.5 f_{max}(x) = \boxed{312.5}

Moderator note:

Great use of the R-method! Bonus question: For the sake of variety, can you solve this via calculus?

We can expand the expression:

49 sin x cos x 168 cos 2 x + 168 sin 2 x 576 sin x cos x 527 sin x cos x 168 ( cos 2 x sin 2 x ) 49\sin x \cos x-168\cos^2 x + 168\sin^2 x - 576\sin x \cos x \\ -527\sin x \cos x-168(\cos^2 x - \sin^2 x)

Now, use sin ( 2 x ) = 2 sin x cos x \sin(2x)=2\sin x\cos x and cos ( 2 x ) = cos 2 x sin 2 x \cos(2x)=\cos^2 x-\sin^2 x :

527 2 sin ( 2 x ) 168 cos ( 2 x ) -\dfrac{527}{2}\sin(2x)-168\cos(2x)

Finally, using Cauchy-Schwarz inequality:

527 2 sin ( 2 x ) 168 cos ( 2 x ) ( ( 527 2 ) 2 + ( 168 ) 2 ) ( sin 2 ( 2 x ) + cos 2 ( 2 x ) ) 277729 4 + 28224 390625 4 625 2 -\dfrac{527}{2}\sin(2x)-168\cos(2x) \leq \sqrt{\left(\left(-\dfrac{527}{2}\right)^2+(-168)^2\right)(\sin^2(2x)+\cos^2(2x))} \\ \leq \sqrt{\dfrac{277729}{4}+28224} \\ \leq \sqrt{\dfrac{390625}{4}} \\ \leq \boxed{\dfrac{625}{2}}

We can generalize it, by finding the maximun of ( a cos x + b sin x ) ( a sin x b cos x ) (a\cos x+b\sin x)(a\sin x-b\cos x) :

a 2 sin x cos x a b cos 2 x + a b sin 2 x b 2 sin x cos x ( a 2 b 2 ) sin x cos x a b ( cos 2 x sin 2 x ) a 2 b 2 2 sin ( 2 x ) a b cos ( 2 x ) ( ( a 2 b 2 2 ) 2 + ( a b ) 2 ) ( sin 2 ( 2 x ) + cos 2 ( 2 x ) ) a 4 2 a 2 b 2 + b 4 + 4 a 2 b 2 4 ( a 2 + b 2 ) 2 2 a^2\sin x\cos x-ab\cos^2 x+ab\sin^2 x-b^2\sin x\cos x \\ (a^2-b^2)\sin x\cos x-ab(\cos^2 x-\sin^2 x) \\ \dfrac{a^2-b^2}{2}\sin(2x)-ab\cos(2x) \leq \sqrt{\left(\left(\dfrac{a^2-b^2}{2}\right)^2+(-ab)^2\right)(\sin^2(2x)+\cos^2(2x))} \\ \leq \sqrt{\dfrac{a^4-2a^2 b^2+b^4+4a^2 b^2}{4}} \\ \leq \dfrac{\sqrt{(a^2+b^2)^2}}{2}

Since we want a maximum, we take the positive value:

a 2 + b 2 2 \leq \boxed{\dfrac{a^2+b^2}{2}}

Moderator note:

Great eye for spotting Cauchy-Schwarz inequality . Wonderful generalization as well.

Fantastic work!

Pi Han Goh
May 24, 2015

Here's a calculus approach.

Consider the general expression f ( x ) = ( a cos x + b sin x ) ( a sin x b cos x ) f(x) = (a \cos x + b\sin x)(a \sin x - b \cos x) for real constants a , b a,b .

For simplicity sake, let S = sin x , C = cos x , T = tan x S = \sin x, C = \cos x, T = \tan x . Applying product rule shows that f ( x ) = ( a C + b S ) 2 ( a S b C ) 2 f'(x) = (aC + bS)^2 - (aS - bC)^2 .

At the turning point, f ( x ) = 0 f'(x) = 0 , then a C + b S = ± ( a S b C ) aC + bS = \pm \ (aS - bC) , equivalently T = S C = a + b a b , a b a + b T = \frac SC = \frac{a+b}{a-b}, -\frac{a-b}{a+b} .

Substitute this value into f ( x ) f(x) ,

f ( x ) = ( a + b T ) ( a T b ) cos 2 T = ( a + b T ) ( a T b ) 1 tan 2 x + 1 = 1 T 2 + 1 ( a + b T ) ( a T b ) \begin{aligned} f(x) &= &(a + bT)(aT - b) \cos^2 T \\ &= &(a+bT)(aT - b) \cdot \frac 1{\tan^2 x + 1} \\ &=& \frac{1}{T^2+1} (a+bT)(aT-b) \\ \end{aligned}

With a little bit of simplification, we get the extremal points of f ( x ) f(x) as ± a 2 + b 2 2 \pm \ \frac{a^2+b^2}{2} .

In this case, a = 7 , b = 24 max ( f ( x ) ) = a 2 + b 2 2 = 312.5 a = 7, b = 24 \Rightarrow \text{max}(f(x))= \frac{a^2+b^2}2 = \boxed{312.5} .

Moderator note:

"With a little bit of simplification" is an understatement. Unorthodox approach nonetheless.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...