Maximum value in triangle

Geometry Level 4

A A , B B and C C are 3 angles of the triangle A B C ABC such that cos 2 A + cos 2 B + cos 2 C 1. \cos { 2A } +\cos { 2B } +\cos { 2C } \ge -1.

What is the maximum value of sin A + sin B + sin C \sin { A } +\sin { B } +\sin { C } ?

1 + 3 1+\sqrt { 3 } 3 1 + 2 1+\sqrt { 2 } 2 + 3 2+\sqrt { 3 } 2

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Linkin Duck
Apr 3, 2017

We notice that: cos 2 A + cos 2 B + cos 2 C = 1 4 cos A cos B cos C \cos { 2A } +\cos { 2B } +\cos { 2C } =-1-4\cos { A } \cos { B } \cos { C }

So, cos 2 A + cos 2 B + cos 2 C 1 cos A cos B cos C 0 A B C \cos { 2A } +\cos { 2B } +\cos { 2C } \ge -1\quad \Longleftrightarrow \quad \cos { A } \cos { B } \cos { C } \le 0\quad \Longrightarrow \quad \triangle ABC is not an acute triangle.

Let A = m a x { A , B , C } 90 0 A < 180 0 cos A 2 2 2 . A=max\left\{ A,B,C \right\} \Longrightarrow { 90 }^{ 0 }\le A<{ 180 }^{ 0 }\Longrightarrow \cos { \frac { A }{ 2 } } \le \frac { \sqrt { 2 } }{ 2 } .

Hence, sin A + sin B + sin C = sin A + 2 cos A 2 cos B C 2 sin A + 2 cos A 2 1 + 2 . \sin { A } +\sin { B } +\sin { C } =\sin { A } +2\cos { \frac { A }{ 2 } } \cos { \frac { B-C }{ 2 } } \le \sin { A } +2\cos { \frac { A }{ 2 } } \le 1+\sqrt { 2 } .

( sin A + sin B + sin C ) m a x = 1 + 2 { \left( \sin { A } +\sin { B } +\sin { C } \right) }_{ max }=1+\sqrt { 2 } when A B C ABC is an isosceles right triangle (for example, A = 90 0 , B = C = 45 0 A={ 90 }^{ 0 },B=C={ 45 }^{ 0 } ).

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...