Maximum value in trigonometry

Geometry Level 2

What is the maximum value of sin ( x ) + cos ( x ) \sin{(x)} + \cos{(x)} to three significant figures if x R x \in \R


The answer is 1.414.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Let f ( x ) = sin ( x ) + cos ( x ) f\left( x \right)=\sin \left( x \right)+\cos \left( x \right) , x R x\in \mathbb{R} .

Then,
f ( x ) = 2 ( 2 2 sin ( x ) + 2 2 cos ( x ) ) = 2 ( sin ( x ) cos ( π 4 ) + sin ( π 4 ) cos ( x ) ) = 2 sin ( x + π 4 ) 2 \begin{gathered} & f\left( x \right) = \sqrt 2 \cdot \left( {\frac{{\sqrt 2 }}{2}\sin \left( x \right) + \frac{{\sqrt 2 }}{2}\cos \left( x \right)} \right) \\ & = \sqrt 2 \cdot \left( {\sin \left( x \right)\cos \left( {\frac{\pi }{4}} \right) + \sin \left( {\frac{\pi }{4}} \right)\cos \left( x \right)} \right) \\ & = \sqrt 2 \cdot \sin \left( {x + \frac{\pi }{4}} \right) \\ & \leqslant \sqrt 2 \\ \end{gathered}

f ( π 4 ) = sin ( π 4 ) + cos ( π 4 ) = 2 2 + 2 2 = 2 1.4142 \begin{gathered} & f\left( \frac{\pi }{4} \right)=\sin \left( \frac{\pi }{4} \right)+\cos \left( \frac{\pi }{4} \right) \\ & =\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} \\ & =\sqrt{2}\simeq \text{1}\text{.4142} \\ \end{gathered}

Hence, f ( x ) f ( π 4 ) f\left( x \right) \leqslant f\left( {\frac{\pi }{4}} \right) , for all x R x \in \mathbb{R} , thus, the maximum value of sin ( x ) + cos ( x ) \sin{(x)} + \cos{(x)} to three significant figures is 1.41 \boxed{1.41} .

2 sin x + cos x = 2 sin ( x + 45 ° ) 2 -\sqrt 2 \leq \sin x+\cos x=\sqrt 2 \sin (x+45\degree)\leq \sqrt 2 .

So, the maximum value of sin x + cos x \sin x+\cos x is 2 1.414 \sqrt 2 \approx \boxed {1.414} .

Sorry, I was about to attempt your question, but I pressed discuss solutions to say this: is x x necessary? If so, can any value be assigned to x x ?

Log in to reply

Yes, as long as x x is a real number. I have clarified

Mahdi Raza - 12 months ago

Log in to reply

Thank you.

For finding the minimum and maximum of the function f(x), differentiate f(x) w.r.t. x and equate it with 'zero'.

Mathematically, df(x)/dx=0

So, d(sinx+cosx)/dx=0

i.e. cosx-sinx=0

ie., cosx=sinx

=> x=π/4, 5π/4, 9π/4 and so on.

Taking x=5π/4 for f(x) to be minimum, f(x)=-2/√2=-√2.

Taking x=π/4 for f(x) to be maximum, f(x)=2/√2=√2.

Thus the range of the function f(x) is [-√2,√2].

Aly Ahmed - 12 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...