Maximum value + Minimum value in trigonometry

Geometry Level 1

What is the sum of maximum value and minimum value of sin ( x ) + cos ( x ) \sin{(x)} + \cos{(x)} if x R x \in \R ?


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Jun 13, 2020

Let f ( x ) = sin x + cos x = 2 ( 1 2 sin x + 1 2 cos x ) = 2 sin ( x + π 4 ) f(x) = \sin x + \cos x = \sqrt 2\left( \frac 1{\sqrt 2} \sin x + \frac 1{\sqrt 2} \cos x \right) = \sqrt 2 \sin \left( x + \frac \pi 4 \right) .

{ max ( f ( x ) ) = 2 max ( sin ( x + π 4 ) ) = 2 min ( f ( x ) ) = 2 min ( sin ( x + π 4 ) ) = 2 \implies \begin{cases} \max(f(x)) = \sqrt 2 \max \left(\sin \left( x + \frac \pi 4 \right)\right) = \sqrt 2 \\ \min(f(x)) = \sqrt 2 \min \left(\sin \left( x + \frac \pi 4 \right)\right) = - \sqrt 2 \end{cases}

Therefore max ( f ( x ) + min ( f ( x ) = 0 \max(f(x) + \min(f(x) = \boxed 0 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...