Maximum value of A1/A2

Calculus Level 4

Let a a and b b be two positive real numbers such that a + 2 b 1 a+2b\le 1 . Let A 1 A_1 and A 2 A_2 be, repectively, the areas of circles with radii a b 3 ab^3 and b 2 b^2 . What is the maximum possible value of A 1 A 2 \dfrac{A_1}{A_2} ?

1 32 \frac{1}{32} 1 16 2 \frac{1}{16\sqrt{2}} 1 64 \frac{1}{64} 1 16 \frac{1}{16}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Mohammed Iqbal
Sep 6, 2017

A 1 A 2 = a 2 b 2 \dfrac{A_1}{A_2}=a^2b^2 . Now, Using AM \geq GM, we have 1 a + 2 b 2 a . 2 b a b 1 2 2 a 2 b 2 1 64 1 \geq a+2b \geq 2\sqrt{a.2b} \Rightarrow \sqrt{ab} \leq \dfrac{1}{2\sqrt2} \Rightarrow a^2b^2 \leq \dfrac{1}{64}

Chew-Seong Cheong
Nov 14, 2016

A 1 A 2 = π ( a b 3 ) 2 π ( b 2 ) 2 = a 2 b 2 \begin{aligned} \frac {A_1}{A_2} & = \frac {\pi(ab^3)^2}{\pi(b^2)^2} = a^2b^2 \end{aligned}

Let a + 2 b = k a+2b=k , where 0 < k 1 0 < k \le 1 , b = 1 2 ( k a ) \implies b = \frac 12 (k-a) and let f ( a ) = A 1 A 2 f(a) = \dfrac {A_1}{A_2} . Then, we have:

f ( a ) = a 2 b 2 f ( a ) = 2 a b 2 + 2 a 2 b d b d a = 2 a 1 2 2 ( k a ) 2 + 2 a 2 1 2 ( k a ) ( 1 2 ) = a ( k a ) ( k 2 a ) 2 \begin{aligned} f(a) & = a^2b^2 \\ f'(a) & = 2ab^2 + 2a^2b\frac {db}{da} \\ & = 2a \cdot \frac 1{2^2} (k-a)^2 + 2a^2 \cdot \frac 12 (k-a) \cdot \left(-\frac 12\right) \\ & = \frac {a(k-a)(k-2a)}2 \end{aligned}

f ( a ) = 0 f'(a) = 0 , when a = k a=k and a = k 2 a=\dfrac k2 . We note that f ( a ) = 6 a 2 6 k a + k 2 2 f''(a) = \dfrac {6a^2-6ka+k^2}2 , and f ( k ) = k 2 2 > 0 f''(k) = \frac {k^2}2 > 0 , therefore, f ( k ) f(k) is a minimum; f ( k 2 ) = k 2 4 < 0 f''\left(\frac k2 \right) = - \frac {k^2}4 < 0 , therefore, f ( k 2 ) f\left(\frac k2 \right) is a maximum.

f ( k 2 ) = ( k 2 ) 2 ( k k 2 2 ) 2 = ( k 2 ) 2 ( k 4 ) 2 = k 2 64 1 64 \begin{aligned} f\left(\frac k2 \right) & = \left(\frac k2 \right)^2\left(\frac {k-\frac k2}2 \right)^2 = \left(\frac k2 \right)^2\left(\frac k4 \right)^2 = \frac {k^2}{64} \le \boxed{\dfrac 1{64}} \end{aligned}

You can also use AM>=GM.

Archit Agrawal - 4 years, 7 months ago

Log in to reply

Because the problem was labeled as Calculus, therefore I used Calculus. AM-GM inequality is Algebra. Why don't you provide a solution.

Chew-Seong Cheong - 4 years, 7 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...