Maximum value#2

Algebra Level 4

Consider all pairs x , y x,y of positive real numbers such that x + y x y x+y\le xy . What is the maximum value (to 4 decimal places) of

M = 1 5 x 2 + 7 y 2 + 1 5 y 2 + 7 x 2 ? M=\frac { 1 }{ 5{ x }^{ 2 }+7{ y }^{ 2 } } +\frac { 1 }{ 5{ y }^{ 2 }+7{ x }^{ 2 } } ?


The answer is 0.0417.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Linkin Duck
Mar 27, 2017

We have from assumption:

0 < x + y x y ( x + y ) 2 4 4 x + y x y 0<x+y\le xy\le \frac { { \left( x+y \right) }^{ 2 } }{ 4 } \Longrightarrow 4\le x+y\le xy

Then,

M = 1 5 x 2 + 7 y 2 + 1 7 x 2 + 5 y 2 = 12 ( x 2 + y 2 ) ( 5 x 2 + 7 y 2 ) ( 7 x 2 + 5 y 2 ) M = 12 ( x 2 + y 2 ) 35 ( x 2 + y 2 ) 2 + 4 x 2 y 2 = 12 34 ( x 2 + y 2 ) + [ ( x 2 + y 2 ) + 4 x 2 y 2 x 2 + y 2 ] M 12 34 × 2 x y + 4 x y = 12 72 x y = 1 6 x y ( A M G M i n e q u a l i t y ) M 1 6 x y 1 24 M=\frac { 1 }{ 5{ x }^{ 2 }+7{ y }^{ 2 } } +\frac { 1 }{ 7{ x }^{ 2 }+5{ y }^{ 2 } } =\frac { 12{ \left( { x }^{ 2 }+{ y }^{ 2 } \right) } }{ \left( 5{ x }^{ 2 }+7{ y }^{ 2 } \right) \left( 7{ x }^{ 2 }+5{ y }^{ 2 } \right) } \\ M=\frac { 12{ \left( { x }^{ 2 }+{ y }^{ 2 } \right) } }{ 35{ \left( { x }^{ 2 }+{ y }^{ 2 } \right) }^{ 2 }+4{ x }^{ 2 }{ y }^{ 2 } } =\frac { 12 }{ 34{ \left( { x }^{ 2 }+{ y }^{ 2 } \right) }+\left[ \left( { x }^{ 2 }+{ y }^{ 2 } \right) +\frac { 4{ x }^{ 2 }{ y }^{ 2 } }{ { x }^{ 2 }+{ y }^{ 2 } } \right] } \\ M\le \frac { 12 }{ 34\times 2xy+4xy } =\frac { 12 }{ 72xy } =\frac { 1 }{ 6xy } \quad (AM-GM\quad inequality)\\ M\le \frac { 1 }{ 6xy } \le \frac { 1 }{ 24 }

When x = y = 2 x=y=2 , M = 1 24 = 0.0417 M=\frac { 1 }{ 24 } = 0.0417 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...