Maximum value#3

Geometry Level 4

D = sin A 3 + sin B 3 + sin C 3 cos A 2 3 + cos B 2 3 + cos C 2 3 D=\frac { \sqrt [ 3 ]{ \sin A } +\sqrt [ 3 ]{ \sin B } +\sqrt [ 3 ]{ \sin C } }{ \sqrt [ 3 ]{ \cos\frac { A }{ 2 } } +\sqrt [ 3 ]{ \cos\frac { B }{ 2 } } +\sqrt [ 3 ]{ \cos\frac { C }{ 2 } } }

If A A , B B and C C in the equation above are 3 angles of the triangle A B C ABC , find the maximum value of D D .


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Linkin Duck
Apr 2, 2017

First, we notice that: if a , b a,b are non-negative numbers then

( a b ) 2 ( a + b ) 0 a 3 + b 3 a 2 b + a b 2 4 ( a 3 + b 3 ) ( a + b ) 3 { \left( a-b \right) }^{ 2 }\left( a+b \right) \ge 0\Longleftrightarrow { a }^{ 3 }+{ b }^{ 3 }\ge { a }^{ 2 }b+a{ b }^{ 2 }\Longleftrightarrow 4\left( { a }^{ 3 }+{ b }^{ 3 } \right) \ge { \left( a+b \right) }^{ 3 }

a + b 4 ( a 3 + b 3 ) 3 ( 1 ) \Longrightarrow a+b\le \sqrt [ 3 ]{ 4\left( { a }^{ 3 }+{ b }^{ 3 } \right) } \quad \left( 1 \right)

Secondly, in a triangle A B C ABC with 3 angles A , B , C A,B,C we have

sin A + sin B = 2 cos C 2 cos A B 2 2 cos C 2 ( 2 ) \sin { A } +\sin { B } =2\cos { \frac { C }{ 2 } } \cos { \frac { A-B }{ 2 } } \le 2\cos { \frac { C }{ 2 } } \quad \left( 2 \right)

From ( 1 ) (1) and ( 2 ) (2) ,

sin A 3 + sin B 3 4 ( sin A + sin B ) 3 4 × 2 cos C 2 3 = 2 cos C 2 3 \sqrt [ 3 ]{ \sin { A } } +\sqrt [ 3 ]{ \sin { B } } \le \sqrt [ 3 ]{ 4\left( \sin { A } +\sin { B } \right) } \le \sqrt [ 3 ]{ 4\times 2\cos { \frac { C }{ 2 } } } =2\sqrt [ 3 ]{ \cos { \frac { C }{ 2 } } } .

By similarly, sin B 3 + sin C 3 2 cos A 2 3 , sin C 3 + sin A 3 2 cos B 2 3 \sqrt [ 3 ]{ \sin { B } } +\sqrt [ 3 ]{ \sin { C } } \le 2\sqrt [ 3 ]{ \cos { \frac { A }{ 2 } } } ,\quad \sqrt [ 3 ]{ \sin { C } } +\sqrt [ 3 ]{ \sin { A } } \le 2\sqrt [ 3 ]{ \cos { \frac { B }{ 2 } } }

So sin A 3 + sin B 3 + sin C 3 cos A 2 3 + cos B 2 3 + cos C 2 3 \sqrt [ 3 ]{ \sin { A } } +\sqrt [ 3 ]{ \sin { B } } +\sqrt [ 3 ]{ \sin { C } } \le \sqrt [ 3 ]{ \cos { \frac { A }{ 2 } } } +\sqrt [ 3 ]{ \cos { \frac { B }{ 2 } } } +\sqrt [ 3 ]{ \cos { \frac { C }{ 2 } } }

Or P 1 P\le 1 . P m i n = 1 { P }_{ min }=1 when A = B = C A=B=C or triangle A B C ABC is equilateral.

Nice solution +1! I guess we can apply Jensen's inequality too.

Sravanth C. - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...