Maximum x 1 x_1 -coordinate

Algebra Level 3

For all 20 20 -tuples of real numbers ( x 1 , x 2 , . . . , x 20 ) , (x_1, x_2, ..., x_{20}), find the maximum value of the number x 1 x_1 such that x 1 + x 2 + + x 20 = 0 and x 1 2 + x 2 2 + + x 20 2 = 1. x_1+x_2+\cdots+x_{20}=0\quad\text{ and }\quad x_1^2+x_2^2+\cdots+x_{20}^2=1. Give your answer to two decimal places.


The answer is 0.97.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Arturo Presa
Feb 9, 2018

Let P P be the set of all 20-vectors ( x 1 , x 2 , x 3 , . . . , x 20 ) (x_1, x_2, x_3, ...,x_{20}) such that the x i s x_i's are real numbers and x 1 + x 2 + x 3 + . . . + x 20 = 0 x_1+ x_2+ x_3+ ...+x_{20}=0 and the 20-vector a = 1 20 ( 1 , 1 , 1 , . . . , 1 ) . \vec{a}=\frac{1}{\sqrt{20}}(1, 1, 1,...,1). Clearly, a = 1 , \|\vec{a}\|=1, and u P \vec{u}\in P if and only if u a = 0. \vec{u}\cdot\vec{a}=0. Let e 1 \vec{e_1} be the 20-vector ( 1 , 0 , 0 , . . . , 0 ) , (1, 0, 0, ..., 0), then the vector v = e 1 ( e 1 a ) a P , \vec{v}=\vec{e_1}-(\vec{e_1}\cdot \vec{a})\vec{a} \in P, and then e 1 = ( e 1 a ) a + v ( ) \vec{e_1}=(\vec{e_1}\cdot \vec{a})\vec{a} +\vec{v} \quad \quad \quad (*)

Now, let's considered an arbitrary 20-vector u = ( x 1 , x 2 , . . . , x 20 ) \vec{u}=(x_1, x_2, ..., x_{20}) in P P satisfying the condition that u = x 1 2 + x 2 2 + x 3 2 + . . . + x 20 2 = 1. \|\vec{u}\|=x_1^2+ x_2^2+ x_3^2+ ...+x_{20}^2=1. Then using (*), we have that x 1 = e 1 u = ( ( e 1 a ) a + v ) u = v u . x_1=\vec{e_1}\cdot\vec{u}= ( (\vec{e_1}\cdot \vec{a})\vec{a} +\vec{v} )\cdot \vec{u}=\vec{v}\cdot\vec{u}. Therefore, the maximum value of x 1 x_1 is attained when u = v v \vec{u}=\frac{\vec{v}}{\|\vec{v}\|} and the maximum value will be v v v = v . \vec{v}\cdot\frac{\vec{v}}{\|\vec{v}\|}=\|\vec{v}\|.

By definition of v , \vec{v}, we have that v = ( 19 20 , 1 20 , 1 20 , . . . , 1 20 ) . \vec{v}=(\frac{19}{20}, -\frac{1}{20}, -\frac{1}{20}, ..., -\frac{1}{20}). Then m = v = 19 20 0.97 m=\|\vec{v}\|=\sqrt{\frac{19}{20}} \approx \boxed{0.97} .

Leonel Castillo
Feb 10, 2018

We want to maximize the function F ( x 1 , x 2 , . . . , x 20 ) = x 1 F(x_1,x_2,...,x_{20}) = x_1 with the two given constraints. Applying the method of Lagrange Multipliers we would have:

( 1 , 0 , . . . , 0 ) = μ ( 1 , 1 , . . . , 1 ) + λ ( 2 x 1 , 2 x 2 , . . . , 2 x 20 ) (1,0,...,0) = \mu (1,1,...,1) + \lambda (2x_1,2x_2,...,2x_{20}) . This vector equality implies that for i > 1 i > 1 , 2 λ x i + μ = 0 x i = μ 2 λ 2\lambda x_i + \mu = 0 \implies x_i = - \frac{\mu}{2 \lambda} . But this implies that x 2 = x 3 = . . . = x 20 x_2 = x_3 = ... = x_{20} . For simplicity, let y = x 2 y = x_2 . Then we have x 1 + 19 y = 0 x 1 2 + 19 y 2 = 1 x_1 + 19y = 0 \\ x_1^2 + 19y^2 = 1 Which implies x 1 2 = 1 19 y 2 x 1 2 = 1 9 2 y 2 x_1 ^2 = 1 - 19y^2 \\ x_1 ^2 = 19^2 y ^2 So 1 19 y 2 = 1 9 2 y 2 y 2 ( 1 9 2 + 19 ) = 1 y 2 = 1 380 1 - 19y^2 = 19^2 y^2 \implies y^2 (19^2 + 19 ) = 1 \implies y^2 = \frac{1}{380} . With this value we can plug in x 1 2 = 1 9 2 380 = 0.95 x_1 ^2 = \frac{19^2}{380} = 0.95 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...