A Strange Derivative

Calculus Level 1

d d ( x x ) x x = ? \large {\frac{d}{d(x^{x})} x^{x} } =\ ?

0 1 2 None

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 14, 2015

Let y = x x d d ( x x ) x x = d d y y = 1 y = x^x\quad \Rightarrow \dfrac {d}{d(x^x)}x^x = \dfrac{d}{dy}y = 1

Moderator note:

Can you determine d d ( x x ) x ? \frac d{d(x^x)} x?

Let y = x x y = x^x

ln y = x ln x 1 y = ln x d x d y + x 1 x d x d y d x d y = 1 y ( ln x + 1 ) d d ( x x ) x = 1 x x ( ln x + 1 ) \begin{aligned} \Rightarrow \ln{y} & = x \ln{x} \\ \dfrac{1}{y} & = \ln{x} \dfrac {dx}{dy} + x\dfrac{1}{x} \dfrac{dx}{dy} \\ \dfrac{dx}{dy} & = \dfrac{1}{y(\ln{x}+1)} \\ \dfrac{d}{d\left( x^x\right)}x & = \dfrac{1}{x^x(\ln{x}+1)} \end{aligned}

Chew-Seong Cheong - 5 years, 12 months ago

Challenge master ote -

d d ( x x ) x = d d ( x ) x × 1 d ( x x ) d x \frac d{d(x^x)} x = \frac d{d(x)} x \times \frac{1}{\frac{d(x^x)}{dx}}

y = x x y = x^x

l o g y = x l o g x logy = xlogx

d y d x = x x ( l o g x + 1 ) \frac{dy}{dx} = x^x( logx + 1)

d d ( x x ) x = 1 x x ( l o g x + 1 ) \frac d{d(x^x)} x = \frac{1}{ x^x( logx + 1)}

sandeep Rathod - 5 years, 12 months ago
Robi Setiawan
Jun 19, 2015

1 its easy

The shocking fact is that there are only 80% solvers

Tanishq Varshney - 5 years, 12 months ago

Log in to reply

And now 77% solvers!

Swapnil Das - 5 years, 10 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...