May be too lengthy

Calculus Level 5

0 π arctan ( sin x 3 cos x ) sin ( 3 x ) d x \large{\displaystyle \int^{\pi}_{0} \arctan \left(\dfrac{\sin x}{3- \cos x} \right) \sin (3x) \, dx}

If the integral above is equal to A B π C \dfrac AB \pi^C , where A , B A,B and C C are positive integers with A , B A,B coprime, find A + B + C A+B+C .


The answer is 164.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Feb 1, 2016

Integration by parts gives I = 0 π tan 1 ( sin x 3 cos x ) sin 3 x d x = [ 1 3 tan 1 ( sin x 3 cos x ) cos 3 x ] 0 π + 1 3 0 π 3 cos x 1 10 6 cos x cos 3 x d x = 1 3 0 π 3 cos x 1 10 6 cos x ( 4 cos 3 x cos x ) d x = 1 3 0 π [ 146 27 53 18 cos x 8 3 cos 2 x 2 cos 3 x + 730 27 ( 5 3 cos x ) ] d x = 1 3 [ 146 27 π + 0 8 3 × 1 2 π 0 + 730 27 × 1 4 π ] = 1 162 π \begin{array}{rcl} I & = & \displaystyle \int_0^\pi \tan^{-1}\left(\frac{\sin x}{3 - \cos x}\right)\sin 3x\,dx \\ & = & \displaystyle \left[-\tfrac13\tan^{-1}\left(\frac{\sin x}{3 - \cos x}\right)\cos3x\right]_0^\pi + \tfrac13\int_0^\pi \frac{3\cos x - 1}{10 - 6\cos x} \cos 3x\,dx \\ & = & \displaystyle \tfrac13\int_0^\pi \frac{3\cos x - 1}{10 - 6\cos x} (4\cos^3x - \cos x)\,dx \\ & = & \displaystyle \tfrac13\int_0^\pi \left[ -\tfrac{146}{27} - \tfrac{53}{18}\cos x - \tfrac83\cos^2x - 2\cos^3x + \frac{730}{27(5 - 3\cos x)}\right]\,dx \\ & = & \displaystyle \tfrac13\left[ -\tfrac{146}{27}\pi + 0 - \tfrac83 \times \tfrac12\pi - 0 + \tfrac{730}{27}\times\tfrac14\pi\right] \\ & = & \tfrac{1}{162}\pi \end{array} making the answer 1 + 162 + 1 = 164 1 + 162 + 1 \,=\, \boxed{164} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...