May I Borrow Your Telescope?

Calculus Level 4

i = 1 ( 1 ) i ( i 2 + i + 1 ) i ! = ? \large \sum_{i=1}^{\infty} \frac{(-1)^i (i^2 + i + 1)}{i!} =\, ?

Notation: ! ! is the factorial notation. For example, 8 ! = 1 × 2 × 3 × × 8 8! = 1\times2\times3\times\cdots\times8 .


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

S = k = 1 ( 1 ) k ( k 2 + k + 1 ) k ! = k = 1 ( 1 ) k ( k 2 k ! + k + 1 k ! ) = k = 1 ( 1 ) k ( k ( k 1 ) ! + k + 1 k ! ) = 1 0 ! 2 1 ! + 2 1 ! + 3 2 ! 3 2 ! 4 3 ! + 4 3 ! + 5 4 ! . . . = 1 0 ! 2 1 ! + 2 1 ! + 3 2 ! 3 2 ! 4 3 ! + 4 3 ! + 5 4 ! . . . = 1 \begin{aligned} S & = \sum_{k=1}^\infty \frac {(-1)^k(k^2+k+1)}{k!} \\ & = \sum_{k=1}^\infty (-1)^k \left(\frac {k^2}{k!} + \frac {k+1}{k!} \right) \\ & = \sum_{k=1}^\infty (-1)^k \left(\frac {k}{(k-1)!} + \frac {k+1}{k!} \right) \\ & = - \frac 1{0!} - \frac 2{1!} + \frac 2{1!} + \frac 3{2!} - \frac 3{2!} - \frac 4{3!} + \frac 4{3!} + \frac 5{4!} - ... \\ & = - \frac 1{0!} {\color{#3D99F6}- \cancel{\frac 2{1!}} + \cancel{\frac 2{1!}}} {\color{#D61F06} + \cancel{\frac 3{2!}} - \cancel{\frac 3{2!}}} {\color{#3D99F6}- \cancel{\frac 4{3!}} + \cancel{\frac 4{3!}}} {\color{#D61F06} + \cancel{\frac 5{4!}} -} ... \\ & = \boxed{-1} \end{aligned}

That's brilliant ( lol get it ? )...+1

Sabhrant Sachan - 4 years, 6 months ago

This below is not perfectly my solution and this is Nihar's solution

i = 1 ( 1 ) i ( i 2 + i + 1 ) i ! = i = 1 ( 1 ) i i 2 i ! + i = 1 ( 1 ) i i i ! + i = 1 ( 1 ) i i ! = i = 1 ( ( 1 ) i ( i 1 ) + 1 ( i 1 ) ! ) + ( 1 + 1 1 2 1 6 ) + ( 1 + 1 2 1 6 + ) = ( i = 1 ( ( 1 ) i 1 ( i 2 ) ! ) + i = 1 ( ( 1 ) i 1 ( i 1 ) ! ) ) + ( 1 ) = ( ( 0 + 1 1 + 1 2 1 6 + ) + ( 1 + 1 1 2 + 1 6 ) ) + ( 1 ) = 1 \begin{aligned} \Large \sum_{i=1}^{\infty} \frac{(-1)^i (i^2 + i + 1)}{i!} & \Large = \color{#D61F06}{ \sum_{i=1}^{\infty} \frac{(-1)^i i^2}{i!}} \color{#333333}{+} \color{#3D99F6}{ \sum_{i=1}^{\infty} \frac{(-1)^i i}{i!}} \color{#333333}{+} \color{#CEBB00}{ \sum_{i=1}^{\infty} \frac{(-1)^i}{i!}}\\ &\Large = \color{#D61F06}{\sum_{i=1}^{\infty}{\left((-1)^i \frac{(i-1)+1}{(i-1)!}\right)}} \color{#333333}{+} \color{#3D99F6}{{\left(-1+1-\frac{1}{2}-\frac{1}{6}-…\right)}} \color{#333333}{+} \color{#CEBB00}{{\left(-1+\frac{1}{2}-\frac{1}{6}+…\right)}}\\ &\Large =\color{#D61F06}{{\left(\sum_{i=1}^{\infty} {\left( (-1)^i \frac{1}{(i-2)!}\right)}+ \sum_{i=1}^{\infty}{\left((-1)^i \frac{1}{(i-1)!}\right)}\right)}}\color{#333333}{+} \color{#20A900}{(-1)}\\ &\Large =\color{#D61F06}{{\left({\left(0+1-1+\frac{1}{2}-\frac{1}{6}+…\right)}+{\left(-1+1-\frac{1}{2}+\frac{1}{6}\right)}\right)}} \color{#333333}{+}\color{#20A900}{(-1)}\\ &\Large= \color{#624F41}{\boxed{-1}} \end{aligned}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...