May not be substituted?

Calculus Level 5

π 2 π 2 ln ( 29 + 20 cos ( 2 x ) ) d x = ( A π B ln ( C ) ) D \large{\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \ln (29+20\cos (2x)) \, dx =(A \pi^{B} \ln ( C) )^{D}}

Given that the above equation is true for positive integers A , B , C A,B,C and D D . Find A + B + C + D A+B+C+D .


The answer is 9.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Tanishq Varshney
Sep 8, 2015

the given integral is

π 2 π 2 ln ( 49 cos 2 x + 9 sin 2 x ) d x \large{\displaystyle \int^{\frac{\pi}{2}}_{-\frac{\pi}{2}} \ln(49 \cos^2 x+9 \sin^2 x) dx}

Now

I ( a ) = π 2 π 2 ln ( a 2 cos 2 x + b 2 sin 2 x ) d x \large{I(a)=\displaystyle \int^{\frac{\pi}{2}}_{-\frac{\pi}{2}} \ln(a^2 \cos^2 x+b^2 \sin^2 x)dx}

differentiating wrt a a

I ( a ) = π 2 π 2 2 a cos 2 x a 2 cos 2 x + b 2 sin 2 x \large{I^{\prime}(a)=\displaystyle \int^{\frac{\pi}{2}}_{-\frac{\pi}{2}} \frac{2a \cos^2 x}{a^2 \cos^2 x+b^2 \sin^2 x}}

taking tan x = t \tan x=t

I ( a ) = 2 a b 2 a 2 ( π 2 π 2 b 2 a 2 + b 2 t 2 d t π 2 π 2 1 1 + t 2 d t ) \large{I^{\prime}(a)=\frac{2a}{b^2-a^2} \left ( \displaystyle \int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\frac{b^2}{a^2+b^2 t^2}dt-\displaystyle \int^{\frac{\pi}{2}}_{-\frac{\pi}{2}}\frac{1}{1+t^2}dt \right)}

I ( a ) = 2 π a + b \large{I^{\prime}(a)=\frac{2 \pi}{a+b}}

I ( a ) = 2 π ln ( a + b ) + c \large{I(a)=2 \pi \ln (a+b)+c}

for a = b = 1 a=b=1 we get c = 2 π ln 2 c=-2 \pi \ln 2

I ( a ) = 2 π ln ( a + b 2 ) \large{I(a)=2 \pi \ln \left( \frac{a+b}{2} \right)}

Good job !

I used this generalization.

Hasan Kassim - 5 years, 9 months ago

Log in to reply

hey buddy can u help me in this

Tanishq Varshney - 5 years, 9 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...