Maybe a quadruple summation

Calculus Level 5

lim i ( j = 1 j = i ( ( k = 1 k = j 1 lim l m = 1 m = l 1 n = 0 n = k m + n ) + 1 ) ( ( j + 1 ) ! ) 2 ) \displaystyle \LARGE \lim _{ i\rightarrow \infty }{ \left( \displaystyle \sum _{ j=1 }^{ j=i }{ \frac { \left( \left( \sum _{ k=1 }^{ k=j }{ \frac { 1 }{ \lim _{ l\rightarrow \infty }{ \sum _{ m=1 }^{ m=l }{ \frac { 1 }{ \prod _{ n=0 }^{ n=k }{ m+n } } } } } } \right) +1 \right) }{ { \left( (j+1)! \right) }^{ 2 } } } \right) }

If the answer can be expressed as e a b {e}^{a}-b , select a + b a+b .

Try its sister problem here
2 3 8 7 4 6 5 1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Kartik Sharma
May 10, 2015

Nice easy problem!

Well, we'll start with the product at the bottom.

1 n = 0 k ( m + n ) = ( m 1 ) ! ( m + k ) ! \displaystyle \frac{1}{\prod_{n=0}^{k}{(m+n)}} = \frac{(m-1)!}{(m+k)!} which is quite easy to observe.

Now the next summation,

lim l m = 1 l Γ ( m ) Γ ( m + k + 1 ) \displaystyle \lim_{l \rightarrow \infty}{\sum_{m=1}^{l}{\frac{\Gamma(m)}{\Gamma(m+k+1)}}}

Multiply and divide by Γ ( k + 1 ) \Gamma(k+1) and take out the denominator while let the numerator be inside the summation.

1 Γ ( k + 1 ) lim l m = 1 l Γ ( m ) Γ ( k + 1 ) Γ ( m + k + 1 ) \displaystyle \frac{1}{\Gamma(k+1)}\lim_{l \rightarrow \infty}{\sum_{m=1}^{l}{\frac{\Gamma(m)\Gamma(k+1)}{\Gamma(m+k+1)}}}

Then we can substitute Beta function inside summation,

1 Γ ( k + 1 ) lim l m = 1 l 0 1 t m 1 ( 1 t ) k \displaystyle \frac{1}{\Gamma(k+1)}\lim_{l \rightarrow \infty}{\sum_{m=1}^{l}{\int_{0}^{1}{{t}^{m-1}{(1-t)}^{k}}}}

0 1 ( 1 t ) k m = 1 t m 1 \displaystyle \int_{0}^{1}{{(1-t)}^{k}\sum_{m=1}^{\infty}{{t}^{m-1}}}

0 1 ( 1 t ) k 1 = 1 k \displaystyle \int_{0}^{1}{{(1-t)}^{k-1}} = \frac{1}{k}

Putting everything in the second summation,

k = 1 j 1 1 k . k ! \displaystyle \sum_{k=1}^{j}{\frac{1}{\frac{1}{k.k!}}}

k = 1 j k . k ! = k = 1 j ( k + 1 ) ! k ! \displaystyle \sum_{k=1}^{j}{k.k!} = \sum_{k=1}^{j}{(k+1)! - k!}

= ( j + 1 ) ! 1 \displaystyle = (j+1)! - 1

Finally into the last summation,

j = 1 1 ( j + 1 ) ! \displaystyle \sum_{j = 1}^{\infty}{\frac{1}{(j+1)!}}

e 2 \displaystyle \boxed{e - 2}

You could've done the first part like this.

lim l m = 1 m = l 1 n = 0 n = k m + n \lim _{ l\rightarrow \infty }{ \sum _{ m=1 }^{ m=l }{ \frac { 1 }{ \prod _{ n=0 }^{ n=k }{ m+n } } } } lim l m = 1 m = l 1 m × ( m + 1 ) × ( m + 2 ) ( m + k ) \lim _{ l\rightarrow \infty }{ \sum _{ m=1 }^{ m=l }{ \frac { 1 }{ m\times \left( m+1 \right) \times \left( m+2 \right) \dots \left( m+k \right) } } } lim l m = 1 m = l 1 k ( m + k ) m m × ( m + 1 ) × ( m + 2 ) ( m + k ) \lim _{ l\rightarrow \infty }{ \sum _{ m=1 }^{ m=l }{ \frac { 1 }{ k } \frac { \left( m+k \right) -m }{ m\times \left( m+1 \right) \times \left( m+2 \right) \dots \left( m+k \right) } } } lim l 1 k m = 1 m = l 1 m × ( m + 1 ) ( m + k 1 ) 1 ( m + 1 ) × ( m + k ) \lim _{ l\rightarrow \infty }{ \frac { 1 }{ k } \sum _{ m=1 }^{ m=l }{ \frac { 1 }{ m\times \left( m+1 \right) \dots \left( m+k-1 \right) } -\frac { 1 }{ \left( m+1 \right) \times \dots \left( m+k \right) } } } lim l 1 k ( 1 1 × ( 2 ) × ( 3 ) ( k ) 1 ( l + 1 ) × ( l + 2 ) ( l + k ) ) \lim _{ l\rightarrow \infty }{ \frac { 1 }{ k } \left( \frac { 1 }{ 1\times \left( 2 \right) \times \left( 3 \right) \dots \left( k \right) } -\frac { 1 }{ \left( l+1 \right) \times \left( l+2 \right) \dots \left( l+k \right) } \right) } 1 k ( k ! ) \frac { 1 }{ k\left( k! \right) }

Abhishek Sharma - 6 years, 1 month ago

Log in to reply

Oh yeah, it's just the same thing that Kishlaya's identity has 2 proofs - one relating to Beta function and the other(and more clever) using telescoping.

Kartik Sharma - 6 years, 1 month ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...