Maybe you should think by parts

Calculus Level 4

I = 0 π 4 x 2 ( x sin x + cos x ) 2 d x = a b π a + b π \large I=\int _{ 0 }^{ \frac { \pi }{ 4 } }{ \frac { { x }^{ 2 } }{ { (x\sin { x } +\cos { x } ) }^{ 2 } } \, dx } =\frac { a-b\pi }{ a+b\pi }

The equation above holds true for coprime positive integers a a and b b . Find a + b a+b .


The answer is 5.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mohammad Hamdar
Mar 26, 2017

I = 0 π 4 x 2 ( x sin x + cos x ) 2 d x = 0 π 4 x cos x ( x sin x + cos x ) 2 . x cos x d x I= \large \int _{ 0 }^{ \frac { \pi }{ 4 } }{ \frac { { x }^{ 2 } }{ { (x\sin { x } +\cos { x } ) }^{ 2 } } dx } =\int _{ 0 }^{ \frac { \pi }{ 4 } }{ \frac { x\cos { x } }{ { (x\sin { x } +\cos { x } ) }^{ 2 } } .\frac { x }{ \cos { x } } } dx Integrating by parts by letting U = x cos x ( x sin x + cos x ) 2 , ( U = 1 x sin x + cos x + c ) { U }^{ ' }=\frac { x\cos { x } }{ { (x\sin { x } +\cos { x } ) }^{ 2 } } , ( U=\frac { -1 }{ x\sin { x } +\cos { x } } +c ) a n d V = x cos x and\quad V=\frac { x }{ \cos { x } } we obtain, I = { π 4 x cos x ( x sin x + cos x ) 0 + 0 π 4 cos x + x sin x cos 2 x ( x sin x + cos x ) d x I=\begin{cases} \frac { \pi }{ 4 } \\ \frac { -x }{ \cos { x } (x\sin { x } +\cos { x } ) } \\ 0 \end{cases}+ \large \int _{ 0 }^{ \frac { \pi }{ 4 } }{ \frac { \cos { x } +x\sin { x } }{ \cos ^{ 2 }{ x } (x\sin { x } +\cos { x } ) } dx } = π 4 π 8 + 1 2 + { π 4 tan x 0 = 4 π 4 + π = \frac { \frac { -\pi }{ 4 } }{ \frac { \pi }{ 8 } +\frac { 1 }{ 2 } } +\begin{cases} \frac { \pi }{ 4 } \\ \tan { x } \\ 0 \end{cases}=\frac { 4-\pi }{ 4+\pi }

Mohd, positive integers do not include 0. So no need to mentioned non-zero. You must mention coprime or relative prime integers if not then ((8,2), (12, 3), (16,4), ...) are all solutions.

Chew-Seong Cheong - 4 years, 2 months ago

Log in to reply

Ohh i see...Thank you for your remark !!

Mohammad Hamdar - 4 years, 2 months ago

☝️ of the good way can be by substituting x = t a n ( ω ) x= tan(\omega) but changing the denominator carefully to square of

c o s ( ω t a n ( ω ) ) cos(\omega - tan(\omega))

Aakash Khandelwal - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...