x 2 + y 2 + x y + y 2 + z 2 + y z + x 2 + z 2 + x z If x , y and z are positive reals satisfying x y + y z + x z ≤ 9 x y z , minimize the expression above to 2 decimal places.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
From the condition, we get 9 ≥ x 1 + y 1 + z 1 ≥ x + y + z 9 ⇒ x + y + z ≥ 1 The problem can be written as A = ( x + 2 y ) 2 + 4 3 y 2 + ( y + 2 z ) 2 + 4 3 z 2 + ( z + 2 x ) 2 + 4 3 x 2 So using Minkowski inequality we get A ≥ 3 ( x + y + z ) ≥ 3 ≈ 1 . 7 3 The equality holds when x = y = z = 3 1
Just to clarify my use of the Minkowski's Inequality, that is A ≥ ( x + 2 y + y + 2 z + z + 2 x ) 2 + ( 2 3 y + 2 3 z + 2 3 x ) 2 = 4 9 + 3 ( x + y + z ) 2 = 3 ( x + y + z ) . Am I right?
Here is a solution using a combination of both AM-GM and Cauchy-Schwarz inequality.
Note that 9 x y z ≥ x y + y z + x z ≥ 3 ( x y z ) 3 2 by AM-GM inequality.
Simplifying, we get
( x y z ) 3 1 ≥ 3 1
Note that
c y c ∑ x 2 + y 2 + x y
= c y c ∑ ( x 2 + y 2 + x y ) ( 3 1 + 3 1 + 3 1 )
≥ c y c ∑ ( 3 1 . x + 3 1 . y + 3 1 . x y ) by Cauchy-Schwarz inequality
= 3 2 ( x + y + z ) + 3 1 . ( x y + y z + x z )
≥ 3 2 . 3 . ( x y z ) 3 1 + 3 1 . 3 . ( x y z ) 3 1 by AM-GM inequality,
≥ 3 2 . 3 . 3 1 + 3 1 . 3 . 3 1 (from above)
= 3 3
= 3
Equality holds when x 2 = y 2 = x y , y 2 = z 2 = y z , z 2 = x 2 = x z (condition for Cauchy-Schwarz inequality to hold, which simplifies to x = y = z = 3 1 ). This happens to be the same condition for AM-GM inequality to hold, which we apply multiple times in our solution. We check also that x y + y z + x z ≤ 9 x y z when x = y = z = 3 1
For completeness, you should check that the equality condition satisfies the initial condition of x y + y z + x z ≤ 9 x y z . Otherwise, equality need not hold.
Problem Loading...
Note Loading...
Set Loading...
We can also use AM-GM inequality.
Since x 2 + y 2 + x y ≥ 3 x y and similar for the other two expressions, we have:
x 2 + y 2 + x y + y 2 + z 2 + y z + z 2 + x 2 + z x ≥ 3 x y + 3 y z + 3 z x ≥ 3 ( 3 3 x y z ) = 3 3 3 x y z
Also,
x y + y z + z x But x y + y z + z x ⇒ 9 x y z ⇒ 3 x y z ≤ 9 x y z ≥ 3 ( 3 x y z ) 2 ≥ 3 ( 3 x y z ) 2 ≥ 3 1
Therefore,
x 2 + y 2 + x y + y 2 + z 2 + y z + z 2 + x 2 + z x ≥ 3 3 3 x y z ≥ 3 3 × 3 1 = 3