Mechanics Of A Rotating Cylinder

!


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Alternate text Alternate text

E q u a t i n g h o r i z o n t a l f o r c e s a s a c c e l e r a t i o n i s z e r o . k ( m g k N ) = N N = k m g 1 + k 2 . . . . . ( 1 ) T o r q u e a b o u t C . O . M : k R N + k R ( m g k N ) = m R 2 2 α . . . . . ( 2 ) f r o m ( 1 ) a n d ( 2 ) : α = 2 k g ( 1 + k ) R ( 1 + k 2 ) C y l i n d e r w i l l s t o p r o t a t i n g w h e n i t s a n g u l a r v e l o c i t y w i l l b e z e r o . ω 2 = 2 α ( 2 π . n ) n = ω 2 R ( 1 + k 2 ) 8 π k ( 1 + k ) g Equating\quad horizontal\quad forces\quad as\\ acceleration\quad is\quad zero.\\ k(mg-kN)\quad =\quad N\quad \\ N\quad =\quad \frac { kmg }{ 1+{ k }^{ 2 } } \quad .....(1)\\ Torque\quad about\quad C.O.M\quad :\\ kRN\quad +\quad kR(mg-kN)\quad =\quad \frac { m{ R }^{ 2 } }{ 2 } \alpha \quad .....(2)\\ from\quad (1)\quad and\quad (2)\quad :\\ \alpha \quad =\quad \frac { 2kg(1+k) }{ R(1+{ k }^{ 2 }) } \quad \\ Cylinder\quad will\quad stop\quad rotating\quad when\quad its\quad angular\\ velocity\quad will\quad be\quad zero.\\ { \omega }^{ 2 }\quad =\quad 2\alpha (2\pi .n)\\ n\quad =\quad \frac { { \omega }^{ 2 }R(1+{ k }^{ 2 }) }{ 8\pi k(1+k)g } a + b + c + d + e = 14 \boxed{a+b+c+d+e=14}

C o r r e c t . ! ! N i c e a n d s h o r t Correct.!!Nice and short

Kunal Gupta - 6 years, 6 months ago

Question is from the famous IE IRODOV.

Nivedit Jain - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...