Medians in a circle

Geometry Level 2

In the diagram, let m = A F m=\overline{AF} and n = F G n=\overline{FG} . Then, choose the answer that represents correctly the arithmetic, geometric and harmonic mean of m m and n n , respectively.

B E \overline{BE} ; C F \overline{CF} ; B C \overline{BC} C D \overline{CD} ; B E \overline{BE} ; D F \overline{DF} B E \overline{BE} ; D F \overline{DF} ; C D \overline{CD} B E \overline{BE} ; B D \overline{BD} ; D F \overline{DF}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Anurag Singh
Apr 25, 2014

r=(m+n)/2 AM=(m+n)/2=r=BE GM=(mn)^(1/2). Now, BF=(m-n)/2. Using pythagoras in triangle BDF, we get DF^2=BD^2 - BF^2=m n. Therefore, DF=sq rt of (m n). Hence, the answer is option 2.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...