Medians

Geometry Level 2

In A B C , \triangle ABC, AD is the median to BC. E is the midpoint of AD. F is the midpoint of AE. What fraction of a r ( A B C ) ar(ABC ) is a r ( A F B ) ar(AFB) .

Click Here for more from this set.

1 10 \frac{1}{10} 1 4 \frac{1}{4} 1 8 \frac{1}{8} 1 6 \frac{1}{6}

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Akhil Bansal
Dec 24, 2015

a r ( A B C ) = 2 a r ( A B D ) ( AD is median ) \Rightarrow ar(\color{#3D99F6}{ABC}) = 2ar(\color{#D61F06}{ABD}) \quad \quad \quad \quad (\text{AD is median})
a r ( A B D ) = 2 a r ( A B E ) ( BE is median ) \Rightarrow ar(\color{#D61F06}{ABD}) = 2ar(\color{#69047E}{ABE}) \quad \quad \quad \quad (\text{BE is median})
a r ( A B E ) = 2 a r ( A B F ) ( BF is median ) \Rightarrow ar(\color{#69047E}{ABE}) = 2ar(\color{#20A900}{ABF}) \quad \quad \quad \quad (\text{BF is median})

Then, a r ( A B F ) a r ( A B C ) = 1 8 \large \therefore \dfrac{ar(\color{#20A900}{ABF})}{ar(\color{#3D99F6}{ABC})} = \dfrac{1}{8}

Nice Solution.

Vignesh Rao - 5 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...