Factorization

Algebra Level 2

If a + b = 15 a+b=15 and a 2 b + a b 2 = 810 a^{2}b+ab^{2}=810 , what is a 3 + b 3 a^{3}+b^{3} ?


The answer is 945.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

a 3 + b 3 = ( a + b ) ( a 2 + b 2 a b ) a^3+b^3=(a+b)(a^2+b^2-ab) Here we know the value of a + b a+b ,we just have to find the value of a 2 + b 2 , a b a^2+b^2,ab .First let,s find a b ab : a 2 b + a b 2 = a b ( a + b ) = a b × 15 = 810 a b = 810 15 = 54 a^2b+ab^2=ab(a+b)=ab\times15=810\rightarrow ab=\frac{810}{15}=54 So a b = 54 ab=54 .Now let,s find a 2 + b 2 a^2+b^2 : ( a + b ) 2 = 1 5 2 a 2 + b 2 + 2 a b = 225 (a+b)^2=15^2\rightarrow a^2+b^2+2ab=225 a 2 + b 2 + 2 ( 54 ) = 225 a 2 + b 2 = 225 108 = 117 a^2+b^2+2(54)=225\rightarrow a^2+b^2=225-108=117 Now we have found the necessary data.Let,s calculate a 3 + b 3 a^3+b^3 : ( a + b ) ( a 2 + b 2 a b ) 15 × ( 117 54 ) = 15 × 63 = 945 (a+b)(a^2+b^2-ab)\rightarrow 15\times(117-54)=15\times63=\boxed{945}

Eric Hernandez
Aug 10, 2014

( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 (a+b)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} . But we know ( a + b ) 3 = 1 5 3 = 3375 (a+b)^{3}=15^{3}=3375 . And we know that 3 a 2 b + 3 a b 2 = 3 ( a 2 b + a b 2 ) = 3 ( 810 ) = 2430 3a^{2}b+3ab^{2}=3(a^{2}b+ab^{2})=3(810)=2430 . Therefore, 3375 = a 3 + b 3 + 2430 3375=a^{3}+b^{3}+2430 , and a 3 + b 3 = 3375 2430 = 975 a^{3}+b^{3}=3375-2430=975 .

Did the Same way!!!!!

VAIBHAV borale - 6 years, 10 months ago

a^2b + ab^2 = 810 or, ab(a+b) = 810 or, ab*15=810 or, ab = 54 Now put the values in (a+b)^3 -3ab(a+b)

Maharshi Banerjee - 6 years, 9 months ago

overrated!!!!!!

Kartik Sharma - 6 years, 10 months ago

Log in to reply

I wasn't the one who chose the level. It was done automatically.

Eric Hernandez - 6 years, 10 months ago

excellent answer

Moemen Adel - 6 years, 9 months ago

3375-2430=945 not 975

Liam young - 2 years, 6 months ago
Mhar Ariz Marino
Dec 8, 2014

Did the Same Same Same Same Way!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...