Spiraling Down

Calculus Level 5

Starting with the vertices P 1 = ( 0 , 1 ) , P 2 = ( 1 , 1 ) , P 3 = ( 1 , 0 ) , P 4 = ( 0 , 0 ) P_1=(0,1),\ P_2=(1,1),\ P_3=(1,0),\ P_4=(0,0) of a square, we construct further points as follows:

  • P 5 P_5 is the midpoint of P 1 P 2 P_1P_2 .
  • P 6 P_6 is the midpoint of P 2 P 3 P_2P_3 .
  • P 7 P_7 is the midpoint of P 3 P 4 , P_3P_4, and so on.

The spiral path approaches a point P = ( A C , B C ) P_\infty=\left(\dfrac{A}{C},\dfrac{B}{C}\right) inside the square, where A , B , C A, B, C are coprime positive integers.

Find A + B + C . A+B+C.


The answer is 14.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

4 solutions

Digvijay Singh
Mar 4, 2018

Since P n P_n is defined as the midpoint of P n 4 P n 3 , x n = 1 2 ( x n 4 + x n 3 ) P_{n-4}P_{n-3},\,x_n=\dfrac{1}{2}(x_{n-4}+x_{n-3}) for n 5. n≥5.

So we prove by induction that 1 2 x n + x n + 1 + x n + 2 + x n + 3 = 2 \dfrac{1}{2}x_n+x_{n+1}+x_{n+2}+x_{n+3}=2

The case n = 1 n=1 is immediate, since 1 2 0 + 1 + 1 + 0 = 2 \dfrac{1}{2}\cdot 0+1+1+0=2

Assume that the result holds for n = k 1 n=k-1 , that is, 1 2 x k 1 + x k + x k + 1 + x k + 2 = 2 \dfrac{1}{2}x_{k-1}+x_k+x_{k+1}+x_{k+2}=2 . Then for n = k n=k ,

1 2 x k + x k + 1 + x k + 2 + x k + 3 = 1 2 x k + x k + 1 + x k + 2 + 1 2 ( x k + 3 4 + x k + 3 3 ) [by above] = 1 2 x k 1 + x k + x k + 1 + x k + 2 = 2 [by the induction hypothesis] \begin{aligned}\dfrac{1}{2}x_k+x_{k+1}+x_{k+2}+x_{k+3} & =\dfrac{1}{2}x_k+x_{k+1}+x_{k+2}+\dfrac{1}{2}(x_{k+3-4}+x_{k+3-3})\,\text{[by above]} \\ & =\dfrac{1}{2}x_{k-1}+x_k+x_{k+1}+x_{k+2}=2\,\text{[by the induction hypothesis]} \\ \end{aligned}


Similarly for n 5 , y n = 1 2 ( y n 4 + y n 3 ) n≥5,\,y_n=\dfrac{1}{2}(y_{n-4}+y_{n-3}) , so the same argument as above holds for y y , with 2 2 replaced by

1 2 y 1 + y 2 + y 3 + y 4 = 1 2 1 + 1 + 0 + 0 = 3 2 \dfrac{1}{2}y_1+y_2+y_3+y_4=\dfrac{1}{2}\cdot 1+1+0+0=\dfrac{3}{2} .

So 1 2 y n + y n + 1 + y n + 2 + y n + 3 = 3 2 \dfrac{1}{2}y_n+y_{n+1}+y_{n+2}+y_{n+3}=\dfrac{3}{2} for all n n .


lim n ( 1 2 x n + x n + 1 + x n + 2 + x n + 3 ) = 1 2 lim n x n + lim n x n + 1 + lim n x n + 2 + lim n x n + 3 = 2 \displaystyle\lim_{n\to\infty}\left(\dfrac{1}{2}x_n+x_{n+1}+x_{n+2}+x_{n+3}\right)=\dfrac{1}{2}\lim_{n\to\infty}x_n+\lim_{n\to\infty}x_{n+1}+\lim_{n\to\infty}x_{n+2}+\lim_{n\to\infty}x_{n+3}=2

Since all the limits on the left hand side are same, we get 7 2 lim n x n = 2 lim n x n = 4 7 \displaystyle\dfrac{7}{2}\lim_{n\to\infty}x_n=2\,\implies\,\lim_{n\to\infty}x_n=\dfrac{4}{7}

In the same way, 7 2 lim n y n = 3 2 lim n y n = 3 7 \displaystyle\dfrac{7}{2}\lim_{n\to\infty}y_n=\dfrac{3}{2}\,\implies\,\lim_{n\to\infty}y_n=\dfrac{3}{7}

So, P = ( 4 7 , 3 7 ) \boxed{P_{\infty}=\left(\dfrac{4}{7},\dfrac{3}{7}\right)} .


Very nice !

Romain Bouchard - 3 years, 3 months ago

Cool! but shouldn't be, n --> ∞ rather than x --> ∞.

Mahadi Xion - 3 years, 3 months ago

Log in to reply

Thanks, Its been corrected now.

Digvijay Singh - 3 years, 3 months ago
Ròtêm Assouline
Mar 17, 2018

I "solved" this problem numerically, and I'm missing the tools for an exact solution. I figured that

[ x 4 i + 1 x 4 i + 2 x 4 i + 3 x 4 i + 4 ] = [ 0.5 0.5 0 0 0 0.5 0.5 0 0 0 0.5 0.5 0.25 0.25 0 0.5 ] i [ 0 1 1 0 ] \begin{bmatrix} x_{4i+1} \\ x_{4i+2} \\ x_{4i+3} \\ x_{4i+4} \\ \end{bmatrix}=\begin{bmatrix} 0.5 & 0.5 & 0 & 0 \\ 0 & 0.5 & 0.5 & 0 \\ 0 & 0 & 0.5 & 0.5 \\ 0.25 & 0.25 & 0 & 0.5 \\ \end{bmatrix} ^i \begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ \end{bmatrix}

and

[ y 4 i + 1 y 4 i + 2 y 4 i + 3 y 4 i + 4 ] = [ 0.5 0.5 0 0 0 0.5 0.5 0 0 0 0.5 0.5 0.25 0.25 0 0.5 ] i [ 1 1 0 0 ] \begin{bmatrix} y_{4i+1} \\ y_{4i+2} \\ y_{4i+3} \\ y_{4i+4} \\ \end{bmatrix}=\begin{bmatrix} 0.5 & 0.5 & 0 & 0 \\ 0 & 0.5 & 0.5 & 0 \\ 0 & 0 & 0.5 & 0.5 \\ 0.25 & 0.25 & 0 & 0.5 \\ \end{bmatrix} ^i \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ \end{bmatrix} .

Now it remaines to calculate lim n [ 0.5 0.5 0 0 0 0.5 0.5 0 0 0 0.5 0.5 0.25 0.25 0 0.5 ] n \displaystyle \lim _{n\to \infty } \begin{bmatrix} 0.5 & 0.5 & 0 & 0 \\ 0 & 0.5 & 0.5 & 0 \\ 0 & 0 & 0.5 & 0.5 \\ 0.25 & 0.25 & 0 & 0.5 \\ \end{bmatrix} ^n .

I raised it to high powers with a computer and obtained something which looked a lot like

[ 1 7 2 7 2 7 2 7 1 7 2 7 2 7 2 7 1 7 2 7 2 7 2 7 1 7 2 7 2 7 2 7 ] \begin{bmatrix} 1\over 7 & 2\over 7 & 2\over 7 & 2\over 7\\ 1\over 7 & 2\over 7 & 2\over 7 & 2\over 7\\ 1\over 7 & 2\over 7 & 2\over 7 & 2\over 7\\ 1\over 7 & 2\over 7 & 2\over 7 & 2\over 7\\ \end{bmatrix} .

Whence [ x y x y x y x y ] = [ 1 7 2 7 2 7 2 7 1 7 2 7 2 7 2 7 1 7 2 7 2 7 2 7 1 7 2 7 2 7 2 7 ] [ 0 1 1 1 1 0 0 0 ] = [ 4 7 3 7 4 7 3 7 4 7 3 7 4 7 3 7 ] \begin{bmatrix} x_{\infty} & y_{\infty} \\ x_{\infty} & y_{\infty} \\ x_{\infty} & y_{\infty} \\ x_{\infty} & y_{\infty} \\ \end{bmatrix}=\begin{bmatrix} 1\over 7 & 2\over 7 & 2\over 7 & 2\over 7\\ 1\over 7 & 2\over 7 & 2\over 7 & 2\over 7\\ 1\over 7 & 2\over 7 & 2\over 7 & 2\over 7\\ 1\over 7 & 2\over 7 & 2\over 7 & 2\over 7\\ \end{bmatrix} \begin{bmatrix} 0 & 1\\ 1 & 1\\ 1 & 0\\ 0 & 0\\ \end{bmatrix}=\begin{bmatrix} 4\over 7 & 3\over 7\\ 4\over 7 & 3\over 7\\ 4\over 7 & 3\over 7\\ 4\over 7 & 3\over 7\\ \end{bmatrix}

Could this have been done rigourously w/o a computer? The Matrix' eigenvalues are far from nice so diagonalization is out of the question.

Anyhow, a very nice problem indeed, thank you!

The eigenvalues aren't nice, but I expressed them in terms of some defined constants so things wouldn't get too hairy. I've just posted a solution using just that method, however, I think Digvijay's method is still the most elegant.

Wesley Low - 2 years, 2 months ago
Wesley Low
Mar 27, 2019

I used a very tedious recurrence method to solve this. Given that P n { P }_{ n } is the midpoint of P n 3 { P }_{ n-3 } and P n 4 { P }_{ n-4 } , we have P n = 1 2 ( P n 3 + P n 4 ) { P }_{ n }=\frac { 1 }{ 2 } \left( { P }_{ n-3 }+{ P }_{ n-4 } \right) . Expressing as a matrix, we get

( P n P n 1 P n 2 P n 3 ) = ( 0 0 0.5 0.5 1 0 0 0 0 1 0 0 0 0 1 0 ) ( P n 1 P n 2 P n 3 P n 4 ) \left( \begin{matrix} { P }_{ n } \\ { P }_{ n-1 } \\ { P }_{ n-2 } \\ { P }_{ n-3 } \end{matrix} \right) =\begin{pmatrix} 0 & 0 & 0.5 & 0.5 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}\left( \begin{matrix} { P }_{ n-1 } \\ { P }_{ n-2 } \\ { P }_{ n-3 } \\ { P }_{ n-4 } \end{matrix} \right)

The transformation matrix has the characteristic polynomial 2 λ 4 λ 1 = 0 2{ \lambda }^{ 4 }-\lambda -1=0 ,where λ \lambda are the eigenvalues. The eigenvalue 1 1 can be easily factored out, leaving 2 λ 3 + 2 λ 2 + 2 λ + 1 = 0 2{ \lambda }^{ 3 }+2{ \lambda }^{ 2 }+2\lambda +1=0 . Making the substitution λ = t 1 3 \lambda=t-\frac { 1 }{ 3 } , it can be simplified further to t 3 + 2 3 t + 13 54 = 0 { t }^{ 3 }+\frac { 2 }{ 3 } t+\frac { 13 }{ 54 } =0 . From here applying Cardano's formula gives the solutions t = u + v t=u+v and t = 1 2 ( u + v ) ± 3 2 ( u v ) i t=\frac { -1 }{ 2 } \left( u+v \right) \pm \frac { \sqrt { 3 } }{ 2 } (u-v) i , where u = 13 108 + 1 12 11 3 3 u=\sqrt [ 3 ]{ \frac { -13 }{ 108 } +\frac { 1 }{ 12 } \sqrt { \frac { 11 }{ 3 } } } , v = 13 108 1 12 11 3 3 v=\sqrt [ 3 ]{ \frac { -13 }{ 108 } -\frac { 1 }{ 12 } \sqrt { \frac { 11 }{ 3 } } } . Converting back to λ \lambda gives us the eigenvalues λ = 1 \lambda =1 , λ = u + v 1 3 \lambda =u+v-\frac { 1 }{ 3 } and λ = α ± β i \lambda =\alpha \pm \beta i where α = 1 2 ( u + v ) 1 3 \alpha =\frac { -1 }{ 2 } \left( u+v \right) -\frac { 1 }{ 3 } and β = 3 2 ( u v ) \beta =\frac { \sqrt { 3 } }{ 2 } (u-v) .

After finding the corresponding eigenvectors for each eigenvalue, the transformation matrix can be expressed as

( 0 0 0.5 0.5 1 0 0 0 0 1 0 0 0 0 1 0 ) = ( 1 ( u + v 1 3 ) 3 ( α + β i ) 3 ( α β i ) 3 1 ( u + v 1 3 ) 2 ( α + β i ) 2 ( α β i ) 2 1 ( u + v 1 3 ) ( α + β i ) ( α β i ) 1 1 1 1 ) ( 1 0 0 0 0 ( u + v 1 3 ) 0 0 0 0 ( α + β i ) 0 0 0 0 ( α β i ) ) ( 1 ( u + v 1 3 ) 3 ( α + β i ) 3 ( α β i ) 3 1 ( u + v 1 3 ) 2 ( α + β i ) 2 ( α β i ) 2 1 ( u + v 1 3 ) ( α + β i ) ( α β i ) 1 1 1 1 ) 1 \begin{pmatrix} 0 & 0 & 0.5 & 0.5 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}=\left( \begin{matrix} 1 & { \left( u+v-\frac { 1 }{ 3 } \right) }^{ 3 } & { \left( \alpha +\beta i \right) }^{ 3 } & { \left( \alpha -\beta i \right) }^{ 3 } \\ 1 & { \left( u+v-\frac { 1 }{ 3 } \right) }^{ 2 } & { \left( \alpha +\beta i \right) }^{ 2 } & { \left( \alpha -\beta i \right) }^{ 2 } \\ 1 & \left( u+v-\frac { 1 }{ 3 } \right) & \left( \alpha +\beta i \right) & \left( \alpha -\beta i \right) \\ 1 & 1 & 1 & 1 \end{matrix} \right) \left( \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & \left( u+v-\frac { 1 }{ 3 } \right) & 0 & 0 \\ 0 & 0 & \left( \alpha +\beta i \right) & 0 \\ 0 & 0 & 0 & \left( \alpha -\beta i \right) \end{matrix} \right) { \left( \begin{matrix} 1 & { \left( u+v-\frac { 1 }{ 3 } \right) }^{ 3 } & { \left( \alpha +\beta i \right) }^{ 3 } & { \left( \alpha -\beta i \right) }^{ 3 } \\ 1 & { \left( u+v-\frac { 1 }{ 3 } \right) }^{ 2 } & { \left( \alpha +\beta i \right) }^{ 2 } & { \left( \alpha -\beta i \right) }^{ 2 } \\ 1 & \left( u+v-\frac { 1 }{ 3 } \right) & \left( \alpha +\beta i \right) & \left( \alpha -\beta i \right) \\ 1 & 1 & 1 & 1 \end{matrix} \right) }^{ -1 }

Given that for a matrix A = Q D Q 1 A=QD{ Q }^{ -1 } where D is the diagonal matrix of eigenvalues and Q is the matrix of corresponding eigenvectors, A n { A }^{ n } can be expressed as Q D n Q 1 Q{ D }^{ n }{ Q }^{ -1 } , we can thus express P n { P }_{ n } as such:

( P n P n 1 P n 2 P n 3 ) = ( 1 ( u + v 1 3 ) 3 ( α + β i ) 3 ( α β i ) 3 1 ( u + v 1 3 ) 2 ( α + β i ) 2 ( α β i ) 2 1 ( u + v 1 3 ) ( α + β i ) ( α β i ) 1 1 1 1 ) ( 1 n 7 0 0 0 0 ( u + v 1 3 ) n 7 0 0 0 0 ( α + β i ) n 7 0 0 0 0 ( α β i ) n 7 ) ( 1 ( u + v 1 3 ) 3 ( α + β i ) 3 ( α β i ) 3 1 ( u + v 1 3 ) 2 ( α + β i ) 2 ( α β i ) 2 1 ( u + v 1 3 ) ( α + β i ) ( α β i ) 1 1 1 1 ) 1 ( P 7 P 6 P 5 P 4 ) \left( \begin{matrix} { P }_{ n } \\ { P }_{ n-1 } \\ { P }_{ n-2 } \\ { P }_{ n-3 } \end{matrix} \right) =\left( \begin{matrix} 1 & { \left( u+v-\frac { 1 }{ 3 } \right) }^{ 3 } & { \left( \alpha +\beta i \right) }^{ 3 } & { \left( \alpha -\beta i \right) }^{ 3 } \\ 1 & { \left( u+v-\frac { 1 }{ 3 } \right) }^{ 2 } & { \left( \alpha +\beta i \right) }^{ 2 } & { \left( \alpha -\beta i \right) }^{ 2 } \\ 1 & \left( u+v-\frac { 1 }{ 3 } \right) & \left( \alpha +\beta i \right) & \left( \alpha -\beta i \right) \\ 1 & 1 & 1 & 1 \end{matrix} \right) \left( \begin{matrix} { 1 }^{ n-7 } & 0 & 0 & 0 \\ 0 & { \left( u+v-\frac { 1 }{ 3 } \right) }^{ n-7 } & 0 & 0 \\ 0 & 0 & { \left( \alpha +\beta i \right) }^{ n-7 } & 0 \\ 0 & 0 & 0 & { \left( \alpha -\beta i \right) }^{ n-7 } \end{matrix} \right) { \left( \begin{matrix} 1 & { \left( u+v-\frac { 1 }{ 3 } \right) }^{ 3 } & { \left( \alpha +\beta i \right) }^{ 3 } & { \left( \alpha -\beta i \right) }^{ 3 } \\ 1 & { \left( u+v-\frac { 1 }{ 3 } \right) }^{ 2 } & { \left( \alpha +\beta i \right) }^{ 2 } & { \left( \alpha -\beta i \right) }^{ 2 } \\ 1 & \left( u+v-\frac { 1 }{ 3 } \right) & \left( \alpha +\beta i \right) & \left( \alpha -\beta i \right) \\ 1 & 1 & 1 & 1 \end{matrix} \right) }^{ -1 }\left( \begin{matrix} { P }_{ 7 } \\ { P }_{ 6 } \\ { P }_{ 5 } \\ { P }_{ 4 } \end{matrix} \right)

Since u + v 1 3 , α ± β i < 1 \left| u+v-\frac { 1 }{ 3 } \right| ,\left| \alpha \pm \beta i \right| <1 , the limit as n n\rightarrow \infty gives ( P P P P ) = ( 1 ( u + v 1 3 ) 3 ( α + β i ) 3 ( α β i ) 3 1 ( u + v 1 3 ) 2 ( α + β i ) 2 ( α β i ) 2 1 ( u + v 1 3 ) ( α + β i ) ( α β i ) 1 1 1 1 ) ( 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ) ( 1 ( u + v 1 3 ) 3 ( α + β i ) 3 ( α β i ) 3 1 ( u + v 1 3 ) 2 ( α + β i ) 2 ( α β i ) 2 1 ( u + v 1 3 ) ( α + β i ) ( α β i ) 1 1 1 1 ) 1 ( P 7 P 6 P 5 P 4 ) \left( \begin{matrix} { P }_{ \infty } \\ { P }_{ \infty } \\ { P }_{ \infty } \\ { P }_{ \infty } \end{matrix} \right) =\left( \begin{matrix} 1 & { \left( u+v-\frac { 1 }{ 3 } \right) }^{ 3 } & { \left( \alpha +\beta i \right) }^{ 3 } & { \left( \alpha -\beta i \right) }^{ 3 } \\ 1 & { \left( u+v-\frac { 1 }{ 3 } \right) }^{ 2 } & { \left( \alpha +\beta i \right) }^{ 2 } & { \left( \alpha -\beta i \right) }^{ 2 } \\ 1 & \left( u+v-\frac { 1 }{ 3 } \right) & \left( \alpha +\beta i \right) & \left( \alpha -\beta i \right) \\ 1 & 1 & 1 & 1 \end{matrix} \right) \left( \begin{matrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{matrix} \right) { \left( \begin{matrix} 1 & { \left( u+v-\frac { 1 }{ 3 } \right) }^{ 3 } & { \left( \alpha +\beta i \right) }^{ 3 } & { \left( \alpha -\beta i \right) }^{ 3 } \\ 1 & { \left( u+v-\frac { 1 }{ 3 } \right) }^{ 2 } & { \left( \alpha +\beta i \right) }^{ 2 } & { \left( \alpha -\beta i \right) }^{ 2 } \\ 1 & \left( u+v-\frac { 1 }{ 3 } \right) & \left( \alpha +\beta i \right) & \left( \alpha -\beta i \right) \\ 1 & 1 & 1 & 1 \end{matrix} \right) }^{ -1 }\left( \begin{matrix} { P }_{ 7 } \\ { P }_{ 6 } \\ { P }_{ 5 } \\ { P }_{ 4 } \end{matrix} \right) ( P P P P ) = 1 27 u 3 + 27 v 3 + 108 u v 64 ( 27 27 81 u v 9 27 u 3 + 27 v 3 + 27 u v 1 27 27 81 u v 9 27 u 3 + 27 v 3 + 27 u v 1 27 27 81 u v 9 27 u 3 + 27 v 3 + 27 u v 1 27 27 81 u v 9 27 u 3 + 27 v 3 + 27 u v 1 ) ( P 7 P 6 P 5 P 4 ) \left( \begin{matrix} { P }_{ \infty } \\ { P }_{ \infty } \\ { P }_{ \infty } \\ { P }_{ \infty } \end{matrix} \right) =\frac { 1 }{ 27{ u }^{ 3 }+27v^{ 3 }+108uv-64 } \left( \begin{matrix} -27 & -27 & 81uv-9 & 27{ u }^{ 3 }+27v^{ 3 }+27uv-1 \\ -27 & -27 & 81uv-9 & 27{ u }^{ 3 }+27v^{ 3 }+27uv-1 \\ -27 & -27 & 81uv-9 & 27{ u }^{ 3 }+27v^{ 3 }+27uv-1 \\ -27 & -27 & 81uv-9 & 27{ u }^{ 3 }+27v^{ 3 }+27uv-1 \end{matrix} \right) \left( \begin{matrix} { P }_{ 7 } \\ { P }_{ 6 } \\ { P }_{ 5 } \\ { P }_{ 4 } \end{matrix} \right) Now, putting in the values of the coordinates of P 4 { P }_{ 4 } to P 7 { P }_{ 7 } gives P = ( 4 7 , 3 7 ) \boxed{{ P }_{ \infty }=\left( \frac { 4 }{ 7 } ,\frac { 3 }{ 7 } \right) }

Prince Zarzees
Feb 19, 2019

x1,y1=0,1 x2,y2=1,1 x3,y3=1,0 x4,y4=0,0 c=0 while(c<=5000): x1,y1=(x1+x2)/2,(y1+y2)/2 x2,y2=(x2+x3)/2,(y2+y3)/2 x3,y3=(x3+x4)/2,(y3+y4)/2 x4,y4=(x4+x1)/2,(y4+y1)/2 c+=1 print (x1,y1) //Some Python!!!

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...