lo g 5 x + 6 lo g x 5 = 5
Find the 2 possible values of x .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
I did the same thing but at the end substituted lo g 5 x = t . Nice!
lo g 5 x + 6 lo g x 5 = 5
In this we will change the base of lo g x 5 into 5 . Using the change of base rule for logarithms:
l o g x 5 = lo g 5 x lo g 5 5 ( N o t e : lo g 5 5 = 1 )
l o g x 5 = lo g 5 x 1
So 6 lo g x 5 = lo g 5 x 6
∴ lo g 5 x + lo g 5 x 6
l e t lo g 5 x d e n o t e ′ y ′
Then it becomes
⇒ y + y 6 = 5
y 2 + 6 = 5 y ( M u l t i p l y b o t h s i d e s b y y )
⇒ y 2 − 5 y + 6 = 0 ( I h a v e s k i p p e d t h e f a c t o r i s i n g p a r t )
y = 3 o r y = 2
∴ lo g 5 x = 3 o r 2
∴ x = 5 3 o r 5 2
x = 1 2 5 o r 2 5
Problem Loading...
Note Loading...
Set Loading...
lo g 5 x + 6 lo g x 5 lo g 5 x + lo g 5 x 6 lo g 5 2 x − 5 lo g 5 x + 6 ( lo g 5 x − 2 ) ( lo g 5 x − 3 ) = 5 = 5 = 0 = 0
⟹ { lo g 5 x = 2 lo g 5 x = 3 ⟹ x = 5 2 = 2 5 ⟹ x = 5 3 = 1 2 5
Therefore, the two possible values of x are 25 and 125 ,