Mend the logs!

Algebra Level 2

log 5 x + 6 log x 5 = 5 \large \log_{5}{x} + 6\log_{x}{5} = 5

Find the 2 possible values of x x .

27 and 729 36 and 72 25 and 125 48 and 192

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Sep 23, 2017

log 5 x + 6 log x 5 = 5 log 5 x + 6 log 5 x = 5 log 5 2 x 5 log 5 x + 6 = 0 ( log 5 x 2 ) ( log 5 x 3 ) = 0 \begin{aligned} \log_5 x + 6 \log_x 5 & = 5 \\ \log_5 x + \frac 6 {\log_5 x} & = 5 \\ \log_5^2 x - 5 \log_5 x + 6 & = 0 \\ (\log_5 x - 2)(\log_5 x -3) & = 0 \end{aligned}

{ log 5 x = 2 x = 5 2 = 25 log 5 x = 3 x = 5 3 = 125 \implies \begin{cases} \log_5 x = 2 & \implies x = 5^2 = 25 \\ \log_5 x = 3 & \implies x = 5^3 = 125 \end{cases}

Therefore, the two possible values of x x are 25 and 125 ,

I did the same thing but at the end substituted log 5 x = t \log_{5} {x} = t . Nice!

Mahdi Raza - 11 months, 2 weeks ago
Syed Hamza Khalid
Sep 23, 2017

log 5 x + 6 log x 5 = 5 \large \color{#D61F06} \log_{5}{x} + 6\log_{x}{5} = 5

In this we will change the base of log x 5 \log_{x}{5} into 5 5 . Using the change of base rule for logarithms:

l o g x 5 = log 5 5 log 5 x \large log_{x}{5} = \frac{\log_{5}{5}}{\log_{5}{x}} ( N o t e : log 5 5 = 1 ) \color{#3D99F6}(Note: \log_{5}{5} =1)

l o g x 5 = 1 log 5 x \large log_{x}{5} = \frac{1}{\log_{5}{x}}

So 6 log x 5 = 6 log 5 x 6\log_{x}{5} =\frac{6}{\log{5}{x}}

log 5 x + 6 log 5 x \large \therefore \log_{5}{x} + \frac{6}{\log_{5}{x}}

l e t log 5 x d e n o t e y \large \color{#3D99F6} let \log_{5}{x} \ denote \ 'y'

Then it becomes

y + 6 y = 5 \large \color{#20A900} \Rightarrow \!\ y + \frac{6}{y} = 5

y 2 + 6 = 5 y y^2 + 6 = 5y ( M u l t i p l y b o t h s i d e s b y y ) \color{#3D99F6}(Multiply\ both\ sides\ by\ y)

y 2 5 y + 6 = 0 \Rightarrow \!\ y^2 -\ 5y + 6\ =\ 0 ( I h a v e s k i p p e d t h e f a c t o r i s i n g p a r t ) \color{#3D99F6}(I\ have\ skipped\ the\ factorising\ part)

y = 3 o r y = 2 y=3\ or\ y=2

log 5 x = 3 o r 2 \large \color{magenta}\therefore \log_{5}{x}\ =3\ or\ 2

x = 5 3 o r 5 2 \therefore x\ =\ 5^3\ or\ 5^2

x = 125 o r 25 \large \color{#D61F06} x\ =\ 125\ or\ 25

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...