Mensuration problem!

Geometry Level 4

The ratio of the volumes of the two cones is 4 : 5 4: 5 .

The ratio of the radii of their bases is 2 : 3 2: 3 .

Find the ratio of their slant heights.

6 : 4 6:4 Can't be determined 8 : 9 8:9 2 : 1 2:1

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

L e t R 1 , H 1 a n d R 2 , H 2 b e t h e r a d i i a n d h e i g h t s o f t w o c o n e s . S o R 1 R 2 = 2 3 . R 1 2 H 1 R 2 2 H 2 = 4 H 1 9 H 2 = 4 5 . H 1 H 2 = 9 5 . R 1 = 2 3 R 2 , H 1 = 9 5 H 2 . r a t i o o f s l a n t h e i g h t = R 1 2 + H 1 2 R 2 2 + H 2 2 . r a t i o o f s l a n t h e i g h t = 4 9 R 2 2 + 81 25 H 2 2 R 2 2 + H 2 2 . C a n n o t b e e v a l u a t e d f r o m g i v e n d a t a . Let~R_1,H_1 ~and~R_2,H_2~be ~the ~radii~and~heights~of~two~cones.\\ So~\dfrac{R_1}{R_2}=\dfrac 2 3.\\ \dfrac{R_1^2*H_1}{R_2^2*H_2}=\dfrac{4*H_1}{9*H_2}=\dfrac 4 5.\\ \implies~\dfrac{H_1}{H_2}=\dfrac 9 5.\\ \therefore~~R_1=\frac 2 3 R_2,~~~~~H_1=\frac 9 5 H_2.\\ \therefore~~ratio ~of~ slant~ height~=\dfrac { \sqrt{R_1^2+H_1^2} } { \sqrt{R_2^2+H_2^2} }.\\ \therefore~~ratio ~of~ slant~ height~=\dfrac { \sqrt{\frac 4 9 *R_2^2+\frac{81}{25} *H_2^2} } { \sqrt{R_2^2+H_2^2} }.\\ Can ~not~be~evaluated~from~given~data.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...