Merry Christmas 2017!

Algebra Level 3

If a , b , c > 0 a, b, c> 0 and a + b + c = 6 a + b + c = 6 , find the possible value of

cyc ( a + 1 b ) 2 \large\ \sum_{\text{cyc}} { { \left( a + \frac { 1 }{ b } \right) }^{ 2 } }

10 35 15 12

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Dec 19, 2017

Using Titu's lemma ,

cyc ( a + 1 b ) 2 ( a + b + c + 1 a + 1 b + 1 c ) 2 3 Using Titu’s lemma again. ( a + b + c + 3 2 a + b + c ) 2 3 = ( 6 + 9 6 ) 2 3 = 18.75 \begin{aligned} \sum_{\text{cyc}} \left(a+\frac 1b\right)^2 & \ge \frac {\left(a+b+c+{\color{#3D99F6}\frac 1a + \frac 1b + \frac 1c}\right)^2}3 & \small \color{#3D99F6} \text{Using Titu's lemma again.} \\ & \ge \frac {\left(a+b+c+{\color{#3D99F6}\frac {3^2}{a+b+c}}\right)^2}3 \\ & = \frac {\left(6+{\color{#3D99F6}\frac 96}\right)^2}3 = 18.75 \end{aligned}

Since cyc ( a + 1 b ) 2 18.75 \displaystyle \sum_{\text{cyc}} \left(a+\frac 1b\right)^2 \ge 18.75 . The only possible value from the options is 35 \boxed{35} .

@Chew-Seong Cheong ,

But sir can't i do this after your 1st step?

( a + b + c + 1 a + 1 b + 1 c ) 2 3 ( 6. a . b . c . 1 a . 1 b . 1 c 6 ) 2 3 6 2 3 = 12 \large\ \frac { { \left( a + b + c + \frac { 1 }{ a } + \frac { 1 }{ b } + \frac { 1 }{ c } \right) }^{ 2 } }{ 3 } \ge \frac { { \left( 6.\sqrt [ 6 ]{ a.b.c.\frac { 1 }{ a } .\frac { 1 }{ b } .\frac { 1 }{ c } } \right) }^{ 2 } }{ 3 } \ge \frac { { 6 }^{ 2 } }{ 3 } = 12

I have applied A M G M AM \ge GM in the first inequality.

Please tell where am i wrong?

Priyanshu Mishra - 3 years, 5 months ago

Log in to reply

You are assuming a = b = c = 2 a=b=c=2 , then ( 6 a b c ( 1 / a ) ( 1 / b ) ( 1 / c ) ) 2 3 = 12 \dfrac {(6\sqrt{abc(1/a)(1/b)(1/c)})^2}3 = 12 . But ( a + b + c + 1 / a + 1 / b + 1 / c ) 2 3 = ( 6 + 3 / 2 ) 2 3 12 \dfrac {(a+b+c+1/a+1/b+1/c)^2}3 = \dfrac {(6+3/2)^2}3 \ne 12 . For all these cases, there must exist a a , b b and c c that equality occurs.

Chew-Seong Cheong - 3 years, 5 months ago

Log in to reply

Oh i see. Thanks for clarification.

Priyanshu Mishra - 3 years, 5 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...