To infinity and below

Algebra Level 4

k = 2 [ exp 2 ( 2 + ( i = 1 1 k i ) 1 ) ] 1 = ? \large \sum_{k=2}^\infty \left [\exp_2 \left(-2 + \left(\sum_{i=1}^\infty \dfrac1{k^i} \right)^{-1} \right) \right]^{-1} = \, ?

Notation : exp A ( B ) \exp_A (B) denotes the exponential function A B A^B .


The answer is 4.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Jun 29, 2016

S = k = 2 1 2 2 + 1 i = 1 1 k i = k = 2 1 2 2 + 1 1 k 1 = k = 2 1 2 2 + k 1 = k = 2 1 2 k 3 = 2 k = 0 1 2 k = 2 ( 1 1 1 2 ) = 4 \begin{aligned} S & = \Large \sum_{k=2}^\infty \frac 1{2^{-2+\frac 1{\sum_{i=1}^\infty \frac 1{k^i}}}} = \sum_{k=2}^\infty \frac 1{2^{-2+\frac 1{\frac 1{k-1}}}} \\ & = \sum_{k=2}^\infty \frac 1{2^{-2+k-1}} = \sum_{k=2}^\infty \frac 1{2^{k-3}} = 2 \sum_{k=0}^\infty \frac 1{2^k} = 2 \left( \frac 1{1-\frac 12} \right) = \boxed{4} \end{aligned}

M K
Jun 29, 2016

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...