Messing around with Infinities

Calculus Level 5

ROUND OFF YOUR ANSWER TO THE NEAREST INTEGER


The answer is 0.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Brian Moehring
Jul 10, 2018

Finding Ψ \Psi : Let k k denote some positive integer. Then 0 ( e x / ( k + 1 ) x e x / k x ) d x = lim ε 0 + ε e x / ( k + 1 ) x d x ε e x / k x d x = lim ε 0 + ε / ( k + 1 ) e u u d u ε / k e u u d u = lim ε 0 + ε / ( k + 1 ) ε / k e u u d u \begin{aligned} \int_0^\infty \left(\frac{e^{-x/(k+1)}}{x} - \frac{e^{-x/k}}{x}\right)\,dx &= \lim_{\varepsilon\to 0^+} \int_{\varepsilon}^\infty \frac{e^{-x/(k+1)}}{x}\,dx - \int_{\varepsilon}^\infty \frac{e^{-x/k}}{x}\,dx \\ &= \lim_{\varepsilon\to 0^+} \int_{\varepsilon/(k+1)}^\infty \frac{e^{-u}}{u}\,du - \int_{\varepsilon/k}^\infty \frac{e^{-u}}{u}\,du \\ &= \lim_{\varepsilon\to 0^+} \int_{\varepsilon/(k+1)}^{\varepsilon/k} \frac{e^{-u}}{u}\,du \end{aligned} To evaluate this, we note that for any ε > 0 \varepsilon > 0 and 0 < u ε k 0 < u \leq \frac{\varepsilon}{k} , we have e ε / k u e u u 1 u \frac{e^{-\varepsilon/k}}{u} \leq \frac{e^{-u}}{u} \leq \frac{1}{u} so by integrating, e ε / k ln ( k + 1 k ) = ε / ( k + 1 ) ε / k e ε / k u d u ε / ( k + 1 ) ε / k e u u d u ε / ( k + 1 ) ε / k 1 u d u = ln ( k + 1 k ) e^{-\varepsilon/k}\ln\left(\frac{k+1}{k}\right) = \int_{\varepsilon/(k+1)}^{\varepsilon/k} \frac{e^{-\varepsilon/k}}{u}\,du \leq \int_{\varepsilon/(k+1)}^{\varepsilon/k} \frac{e^{-u}}{u}\,du \leq \int_{\varepsilon/(k+1)}^{\varepsilon/k} \frac{1}{u}\,du = \ln\left(\frac{k+1}{k}\right) and taking the limit, ln ( k + 1 k ) = lim ε 0 + e ε / k ln ( k + 1 k ) lim ε 0 + ε / ( k + 1 ) ε / k e u u d u lim ε 0 + ln ( k + 1 k ) = ln ( k + 1 k ) . \ln\left(\frac{k+1}{k}\right) = \lim_{\varepsilon\to 0^+}e^{-\varepsilon/k}\ln\left(\frac{k+1}{k}\right) \leq \lim_{\varepsilon\to 0^+} \int_{\varepsilon/(k+1)}^{\varepsilon/k} \frac{e^{-u}}{u}\,du \leq \lim_{\varepsilon\to 0^+} \ln\left(\frac{k+1}{k}\right) = \ln\left(\frac{k+1}{k}\right). Therefore, we see 0 ( e x / ( k + 1 ) x e x / k x ) d x = lim ε 0 + ε / ( k + 1 ) ε / k e u u d u = ln ( k + 1 k ) = ln ( k + 1 ) ln ( k ) \int_0^\infty \left(\frac{e^{-x/(k+1)}}{x} - \frac{e^{-x/k}}{x}\right)\,dx = \lim_{\varepsilon\to 0^+} \int_{\varepsilon/(k+1)}^{\varepsilon/k} \frac{e^{-u}}{u}\,du = \ln\left(\frac{k+1}{k}\right) = \ln(k+1) - \ln(k) Now note that since α + β \alpha+\beta is odd, β α \beta - \alpha is also odd, so n = α β e x n ( 1 ) n + 1 x = n = 0 β α e x / ( α + n ) ( 1 ) α + n + 1 x = n = 0 ( β α 1 ) / 2 e x / ( α + ( 2 n ) ) ( 1 ) α + ( 2 n ) + 1 x + e x / ( α + ( 2 n + 1 ) ) ( 1 ) α + ( 2 n + 1 ) + 1 x = ( 1 ) α n = 0 ( β α 1 ) / 2 e x / ( α + 2 n + 1 ) x e x / ( α + 2 n ) x \begin{aligned} \sum_{n=\alpha}^\beta \frac{\sqrt[n]{e^{-x}}(-1)^{n+1}}{x} &= \sum_{n=0}^{\beta-\alpha} \frac{e^{-x/(\alpha+n)}(-1)^{\alpha+n+1}}{x} \\ &= \sum_{n=0}^{(\beta-\alpha-1)/2} \frac{e^{-x/(\alpha+(2n))}(-1)^{\alpha+(2n)+1}}{x} + \frac{e^{-x/(\alpha+(2n+1))}(-1)^{\alpha+(2n+1)+1}}{x} \\ &= (-1)^\alpha \sum_{n=0}^{(\beta-\alpha-1)/2} \frac{e^{-x/(\alpha+2n+1)}}{x} - \frac{e^{-x/(\alpha+2n)}}{x} \end{aligned} From this along with our previous work, we can conclude Ψ = ( 1 ) α n = 0 ( β α 1 ) / 2 ln ( α + 2 n + 1 ) ln ( α + 2 n ) = n = α β ( 1 ) n + 1 ln ( n ) \Psi = (-1)^\alpha \sum_{n=0}^{(\beta-\alpha-1)/2} \ln(\alpha+2n+1) - \ln(\alpha+2n) = \sum_{n=\alpha}^\beta (-1)^{n+1} \ln(n)

Finding Φ \Phi : Once again, we let k k denote some positive integer to write 0 ( ( arctan ( 1 + ( k + 1 ) x ) ) 1 / ( 2 + ( k + 1 ) x ) x ( arctan ( 1 + k x ) ) 1 / ( 2 + k x ) x ) d x = lim ε 0 + lim N ε N ( arctan ( 1 + ( k + 1 ) x ) ) 1 / ( 2 + ( k + 1 ) x ) x d x ε N ( arctan ( 1 + k x ) ) 1 / ( 2 + k x ) x d x = lim ε 0 + lim N ( k + 1 ) ε ( k + 1 ) N ( arctan ( 1 + u ) ) 1 / ( 2 + u ) u d u k ε k N ( arctan ( 1 + u ) ) 1 / ( 2 + u ) u d u = lim N k N ( k + 1 ) N ( arctan ( 1 + u ) ) 1 / ( 2 + u ) u d u lim ε 0 + k ε ( k + 1 ) ε ( arctan ( 1 + u ) ) 1 / ( 2 + u ) u d u \begin{aligned} \int_0^\infty &\left(\frac{\left(\arctan(1+(k+1)x)\right)^{1/(2+(k+1)x)}}{x} - \frac{\left(\arctan(1+kx)\right)^{1/(2+kx)}}{x}\right)\,dx \\ &= \lim_{\varepsilon\to 0^+}\lim_{N\to\infty} \int_{\varepsilon}^N \frac{\left(\arctan(1+(k+1)x)\right)^{1/(2+(k+1)x)}}{x}\,dx - \int_{\varepsilon}^N \frac{\left(\arctan(1+kx)\right)^{1/(2+kx)}}{x}\,dx \\ &= \lim_{\varepsilon\to 0^+}\lim_{N\to\infty} \int_{(k+1)\varepsilon}^{(k+1)N} \frac{\left(\arctan(1+u)\right)^{1/(2+u)}}{u}\,du - \int_{k\varepsilon}^{kN} \frac{\left(\arctan(1+u)\right)^{1/(2+u)}}{u}\,du \\ &= \lim_{N\to\infty} \int_{kN}^{(k+1)N} \frac{\left(\arctan(1+u)\right)^{1/(2+u)}}{u}\,du - \lim_{\varepsilon\to 0^+} \int_{k\varepsilon}^{(k+1)\varepsilon} \frac{\left(\arctan(1+u)\right)^{1/(2+u)}}{u}\,du \end{aligned} Since lim u 0 + ( arctan ( 1 + u ) ) 1 / ( 2 + u ) = arctan ( 1 ) 1 / 2 = π 2 lim u ( arctan ( 1 + u ) ) 1 / ( 2 + u ) = 1 \lim_{u\to 0^+} \left(\arctan(1+u)\right)^{1/(2+u)} = \arctan(1)^{1/2} = \frac{\sqrt{\pi}}{2} \\ \lim_{u\to \infty} \left(\arctan(1+u)\right)^{1/(2+u)} = 1 we can once again use the squeeze theorem to show that lim ε 0 + k ε ( k + 1 ) ε ( arctan ( 1 + u ) ) 1 / ( 2 + u ) u d u = π 2 lim ε 0 + k ε ( k + 1 ) ε 1 u d u = π 2 ln ( k + 1 k ) \lim_{\varepsilon\to 0^+} \int_{k\varepsilon}^{(k+1)\varepsilon} \frac{\left(\arctan(1+u)\right)^{1/(2+u)}}{u}\,du = \frac{\sqrt{\pi}}{2} \lim_{\varepsilon\to 0^+} \int_{k\varepsilon}^{(k+1)\varepsilon} \frac{1}{u}\,du = \frac{\sqrt{\pi}}{2}\ln\left(\frac{k+1}{k}\right) lim N k N ( k + 1 ) N ( arctan ( 1 + u ) ) 1 / ( 2 + u ) u d u = lim N k N ( k + 1 ) N 1 u d u = ln ( k + 1 k ) \lim_{N\to\infty} \int_{kN}^{(k+1)N} \frac{\left(\arctan(1+u)\right)^{1/(2+u)}}{u}\,du = \lim_{N\to\infty} \int_{kN}^{(k+1)N} \frac{1}{u}\,du = \ln\left(\frac{k+1}{k}\right) and therefore 0 ( ( arctan ( 1 + ( k + 1 ) x ) ) 1 / ( 2 + ( k + 1 ) x ) x ( arctan ( 1 + k x ) ) 1 / ( 2 + k x ) x ) d x = ln ( k + 1 k ) π 2 ln ( k + 1 k ) = ( 1 π 2 ) ( ln ( k + 1 ) ln ( k ) ) \begin{aligned} \int_0^\infty \left(\frac{\left(\arctan(1+(k+1)x)\right)^{1/(2+(k+1)x)}}{x} - \frac{\left(\arctan(1+kx)\right)^{1/(2+kx)}}{x}\right)\,dx &= \ln\left(\frac{k+1}{k}\right) - \frac{\sqrt{\pi}}{2}\ln\left(\frac{k+1}{k}\right) \\ &= \left(1 - \frac{\sqrt{\pi}}{2}\right)\left(\ln(k+1) - \ln(k)\right) \end{aligned} Now, using the same method as before, we can conclude Φ = ( 1 π 2 ) n = α β ( 1 ) n + 1 ln ( n ) \Phi = \left(1 - \frac{\sqrt{\pi}}{2}\right)\sum_{n=\alpha}^\beta (-1)^{n+1} \ln(n)


Finally, we have 1 + Φ Ψ = 1 + ( 1 π 2 ) n = α β ( 1 ) n + 1 ln ( n ) n = α β ( 1 ) n + 1 ln ( n ) = 1 + ( 1 π 2 ) = 4 π 2 1 + \frac{\Phi}{\Psi} = 1 + \frac{\left(1 - \frac{\sqrt{\pi}}{2}\right)\displaystyle\sum_{n=\alpha}^\beta (-1)^{n+1} \ln(n)}{\displaystyle\sum_{n=\alpha}^\beta (-1)^{n+1} \ln(n)} = 1 + \left(1 - \frac{\sqrt{\pi}}{2}\right) = \frac{4-\sqrt{\pi}}{2} so that A = 4 , B = 2 A B B = 4 2 = 0 A = 4, B=2 \implies \sqrt[B]{A}-B = \sqrt{4}-2 = \boxed{0}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...