Messing with summations

Calculus Level 3

Find the value of 0 [ r = 0 ( ( 1 ) r x 2 r + 1 2 r ( r ! ) ) ] [ k = 0 ( x k 2 k ( k ! ) ) 2 ] d x \int_0^{\infty} \left[ \sum_{r=0}^{\infty} \left( \frac {(-1)^r x^{2r+1}}{2^r\cdot (r!)}\right) \right] \left[\sum_{k=0}^{\infty} \left( \frac {x^k}{2^k\cdot (k!)}\right)^2\right] dx


The answer is 1.648.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rohan Shinde
Dec 19, 2018

Note that r = 0 ( ( 1 ) r x 2 r + 1 2 r r ! ) = x r = 0 ( x 2 2 ) r r ! = x e x 2 2 \sum_{r=0}^{\infty} \left(\frac {(-1)^r x^{2r+1}}{2^r r! }\right)=x\sum_{r=0}^{\infty} \frac {(\frac {-x^2}{2})^r}{r!}=xe^{\frac {-x^2}{2}}

Hence integral evaluates to k = 0 1 4 k ( k ! ) 2 0 x 2 k + 1 e x 2 2 d x \sum_{k=0}^{\infty} \frac {1}{4^k(k!)^2}\int_0^{\infty} x^{2k+1}e^{\frac {-x^2}{2}}dx

On substituting x 2 2 = t \frac {x^2}{2} =t the integral turns to k = 0 1 2 k ( k ! ) 2 0 t k e k d t \sum_{k=0}^{\infty} \frac {1}{2^k(k!)^2}\int_0^{\infty} t^k e^{-k} dt

And using well known result 0 t k e k d t = k ! \int_0^{\infty} t^k e^{-k} dt=k!

Hence our integral turns to solving the summation k = 0 ( 1 2 ) k k ! = e 1 2 \sum_{k=0}^{\infty} \frac {\left(\frac 12\right)^k}{k!}=e^{\frac 12}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...