Messy quadratic

Algebra Level 5

This problem is from OMO.

For reals x 3 x \ge 3 , let f ( x ) f(x) denote the function f ( x ) = x + x 4 x 3 2 f(x) = \frac{-x + x\sqrt{4x - 3}}{2} . Suppose a 1 , a 2 , . . . , a 2013 a_1, a_2, ..., a_{2013} is a sequence of real numbers such that a 1 > 3 a_1 > 3 , a 2013 = 2013 a_{2013} = 2013 , and for n = 1 , 2 , . . . , 2012 n = 1, 2, ..., 2012 , a n + 1 = f ( a n ) a_{n + 1} = f(a_n) . Determine the value of a 1 + i = 1 2012 a i + 1 3 a i 2 + a i a i + 1 + a i + 1 2 a_1 + \displaystyle\sum_{i = 1}^{2012}\frac{a_{i + 1}^3}{a_i^2 + a_ia_{i + 1} + a_{i + 1}^2}


The answer is 4025.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Hasan Kassim
Sep 17, 2014

Let A = a 1 + i = 1 2012 a i + 1 3 a i 2 + a i a i + 1 + a i + 1 2 = a 1 + i = 1 2012 a i + 1 3 a i 3 + a i 3 a i 2 + a i a i + 1 + a i + 1 2 \displaystyle A= a_1 +\sum_{i=1}^{2012} \frac{a_{i+1}^3}{a_i^2+a_ia_{i+1}+a_{i+1}^2} = a_1 +\sum_{i=1}^{2012} \frac{a_{i+1}^3-a_i^3+a_i^3}{a_i^2+a_ia_{i+1}+a_{i+1}^2}

= a 1 + i = 1 2012 ( a i + 1 a i ) + i = 1 2012 a i 3 a i 2 + a i a i + 1 + a i + 1 2 \displaystyle = a_1 +\sum_{i=1}^{2012} (a_{i+1} -a_i) +\sum_{i=1}^{2012} \frac{a_i^3}{a_i^2+a_ia_{i+1}+a_{i+1}^2}

The first sum is solved using telescoping series property to get a 1 + a 2013 \displaystyle -a_1+a_{2013} .

We have f ( x ) = x + x 4 x 3 2 \displaystyle f(x)=\frac{-x+x\sqrt{4x-3}}{2} and a i + 1 = f ( a i ) \displaystyle a_{i+1}=f(a_i) .

x 2 + x f ( x ) + f ( x ) 2 = x 2 + f ( x ) ( x + f ( x ) ) = x 2 + f ( x ) ( x + x + x 4 x 3 2 ) \displaystyle x^2 +xf(x) +f(x)^2 = x^2 +f(x) (x+f(x))= x^2 +f(x) (x+ \frac{-x+x\sqrt{4x-3}}{2})

= x 2 + x + x 4 x 3 2 x + x 4 x 3 2 \displaystyle =x^2+ \frac{-x+x\sqrt{4x-3}}{2} \frac{x+x\sqrt{4x-3}}{2}

= x 2 + 4 x 2 + 4 x 3 4 = x 3 \displaystyle = x^2 + \frac{-4x^2 +4x^3}{4} = x^3 = > a i 2 + a i a i + 1 + a i + 1 2 = a i 3 \displaystyle => a_i^2+a_ia_{i+1}+a_{i+1}^2 = a_i^3 (let x = a i ) \displaystyle x=a_i)

= > A = a 1 a 1 + a 2013 + i = 1 2012 1 = 2013 + 2012 = 4025 \displaystyle => A= a_1-a_1+a_{2013} +\sum_{i=1}^{2012} 1 = 2013+2012=\boxed{4025}

Zi Song Yeoh
Sep 17, 2014

Verify that a i 3 = a i 2 + a i a i + 1 + a i + 1 2 a_i^3 = a_i^2 + a_ia_{i + 1} + a_{i + 1}^2 , so

i = 1 2012 a i + 1 3 a i 2 + a i a i + 1 + a i + 1 2 i = 1 2012 a i 3 a i 2 + a i a i + 1 + a i + 1 2 = i = 1 2012 ( a i + 1 a i ) = a 2013 a 1 . \displaystyle\sum_{i = 1}^{2012}\frac{a_{i + 1}^3}{a_i^2 + a_ia_{i + 1} + a_{i + 1}^2} - \displaystyle\sum_{i = 1}^{2012}\frac{a_{i }^3}{a_i^2 + a_ia_{i + 1} + a_{i + 1}^2} = \displaystyle\sum_{i = 1}^{2012}(a_{i + 1} - a_i) = a_{2013} - a_{1}.

Since i = 1 2012 a i 3 a i 2 + a i a i + 1 + a i + 1 2 = 2012 \displaystyle\sum_{i = 1}^{2012}\frac{a_{i }^3}{a_i^2 + a_ia_{i + 1} + a_{i + 1}^2} = 2012 , the desired answer is thus 2013 + 2012 = 4025 2013 + 2012 = \boxed{4025} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...