Find the smallest positive integer x such that tan x ∘ = cos 2 0 1 3 ∘ − sin 2 0 1 3 ∘ cos 2 0 1 3 ∘ + sin 2 0 1 3 ∘ .
This problem is shared by Michael T. from AIME.
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Nice and easy way to solve this question! Voted up!
gr8 dude,,,,,,,,
tan x = cos(2013) + sin(2013)/cos(2013) - sin(2013)
tan x = (-0.8387 + -0.5446)/(-0.8387 - (-0.5446))
tan x = -1.3833/-0.2941
tan x = 4.70350221
x = arctan(4.70350221)
x = 78
^_^
This was an AIME problem, so no calculators :(
This problem can be solved with 3 trigonometric identities. Let's start by simplifying the angle's value. How many full rotation of 360 degrees are done in 2013? 5. So we can say that:
tan 2 0 1 3 ≡ tan 2 1 3
Then maybe there is a way to simplify the those cos and sin with the tank so we obtain only sine and cosine. Let's start by removing the denominator and using the definition of tan(x). We have :
cos x sin x cos 2 1 3 − cos x sin x sin 2 1 3 = cos 2 1 3 + sin 2 1 3
Moving cos(x) on the RHS and using these 2 identities we have :
sin a sin b = 2 1 ( cos ( a − b ) − cos ( a + b ) ) cos a cos b = 2 1 ( cos ( a − b ) + cos ( a + b ) ) sin x cos 2 1 3 − sin x sin 2 1 3 = cos x cos 2 1 3 + cos x sin 2 1 3 sin x cos 2 1 3 − 2 1 ( cos ( x − 2 1 3 ) − cos ( x + 2 1 3 ) ) = cos x sin 2 1 3 + 2 1 ( cos ( x − 2 1 3 ) + cos ( x + 2 1 3 ) )
With some rearrangement and another identity, we have:
sin ( a − b ) = sin a cos b − sin b cos a sin x cos 2 1 3 − cos x sin 2 1 3 = cos ( x − 2 1 3 ) sin ( x − 2 1 3 ) = cos ( x − 2 1 3 )
Which means that :
sin ( x − 2 1 3 ) = cos ( x − 2 1 3 ) tan ( x − 2 1 3 ) = 1 x − 2 1 3 = 4 5 x = 2 5 8
The last thing to do is verify if 258 is the smallest angle for x. Tan(x) is periodic within pi so we have :
tan ( 2 5 8 ) ≡ tan ( 7 8 )
The final answer is x = 7 8
Perhaps simpler, cos 2 0 1 3 ∘ − sin 2 0 1 3 ∘ cos 2 0 1 3 ∘ + sin 2 0 1 3 ∘ = cos 3 3 ∘ − sin 3 3 ∘ cos 3 3 ∘ + sin 3 3 ∘ = cos 3 3 ∘ cos 3 3 ∘ − cos 3 3 ∘ sin 3 3 ∘ cos 3 3 ∘ cos 3 3 ∘ + cos 3 3 ∘ sin 3 3 ∘ = 1 − tan 3 3 ∘ 1 + tan 3 3 ∘ = 1 − tan 4 5 ∘ tan 3 3 ∘ tan 4 5 ∘ + tan 3 3 ∘ = tan ( 4 5 + 3 3 ) ∘ = tan 7 8 ∘ where the third-to-last step follows because tan 4 5 ∘ = 1 , and the second-to-last step follows because tan ( a + b ) = 1 − tan a tan b tan a + tan b Hence, since the domain of arctan is ( − 9 0 ∘ , 9 0 ∘ ) , 7 8 is the smallest positive integer.
Log in to reply
Nice one!
Nitpicking, but you're not simply concerned about the restricted domain, since we want the smallest positive integer. Instead, you want the answer to be in ( 1 , 1 8 0 .
Log in to reply
Yeah, I was trying to think of a good way to say it. What I meant was:
tan is injective on the interval ( − 9 0 ∘ , 9 0 ∘ ) , and so no positive value below 7 8 ∘ has the same tangent as 7 8 ∘ , so the answer is 7 8 .
cos 2 0 1 3 ∘ − sin 2 0 1 3 ∘ cos 2 0 1 3 ∘ + sin 2 0 1 3 ∘ = cos 2 1 3 ∘ − sin 2 1 3 ∘ cos 2 1 3 ∘ + sin 2 1 3 ∘
= sin 3 3 ∘ − cos 3 3 ∘ cos 3 3 ∘ + sin 3 3 ∘
= ( sin 3 3 ∘ − cos 3 3 ∘ cos 3 3 ∘ + sin 3 3 ∘ ) ( sin 3 3 ∘ + cos 3 3 ∘ cos 3 3 ∘ + sin 3 3 ∘ )
= sin 2 3 3 ∘ − cos 2 3 3 ∘ 1 + 2 sin 3 3 ∘ cos 3 3 ∘
= − cos 6 6 ∘ sin 9 0 ∘ + sin 6 6 ∘
= cos 2 4 6 ∘ 2 sin 7 8 ∘ cos 1 2 ∘
= ( 2 cos 1 2 ∘ cos 2 4 6 ∘ ) sin 7 8 ∘
Now if we let ( 2 cos 1 2 ∘ cos 2 4 6 ∘ ) = cos y , we see that
cos 2 4 6 ∘ = 2 cos 1 2 ∘ cos y
cos 9 0 ∘ + cos 2 4 6 ∘ = cos ( 1 2 + y ) ∘ + c o s ( 1 2 − y ) ∘
This gives
2 4 6 = 1 2 + y and 9 0 = 1 2 − y
Solving them for y we get y = 7 8 ∘
and hence
cos 2 0 1 3 ∘ − sin 2 0 1 3 ∘ cos 2 0 1 3 ∘ + sin 2 0 1 3 ∘ = ( 2 cos 1 2 ∘ cos 2 4 6 ∘ ) sin 7 8 ∘
= cos 7 8 ∘ sin 7 8 ∘
= sin 7 8 ∘
Therefore, x = 7 8 ∘
The expression above can be rewritten as tan x = 1 − 1 ⋅ cos 2 0 1 3 sin 2 0 1 3 1 + cos 2 0 1 3 sin 2 0 1 3 = 1 − tan 4 5 ∘ ⋅ tan 2 0 1 3 ∘ tan 4 5 ∘ + tan 2 0 1 3 ∘ = tan ( 4 5 ∘ + 2 0 1 3 ∘ ) = tan 2 0 5 8 ∘ . Since tangent has a period of 1 8 0 ∘ , then 1 8 0 ∘ n + x = 2 0 5 8 ∘ for n integer. Therefore, x = 7 8 ∘ . # Q . E . D . #
nice! :)
We are given: tan x ∘ = c o s 2 0 1 3 ∘ − sin 2 0 1 3 ∘ c o s 2 0 1 3 ∘ + sin 2 0 1 3 ∘ .
We follow the following steps:
STEP 1 : We divide both numerator and denominator by \(\cos 2013^\circ in Right Hand Side.
STEP **2**: We get,
\( \frac{1+\tan 2013^\circ}{1-\tan 2013^\circ}\)
= ( 1 − tan 2 0 1 3 ∘ × tan 4 5 ∘ t a n 4 5 ∘ + tan 2 0 1 3 ∘
= tan ( 2 0 1 3 + 4 5 ) ∘ = tan 2 0 5 8 ∘ = tan ( 3 6 0 × 5 + 2 5 8 ) ∘ = tan 2 5 8 ∘ = tan ( 1 8 0 + 7 8 ) ∘ = tan 7 8 ∘
The latex errors are due to carelessly pressing the Continue button.Sorry, for that.Can't edit:(
We want to rewrite the numerator cos 2 0 1 3 o + sin 2 0 1 3 o in the form of R sin ( θ + α ) . As R sin ( θ + α ) = R ( sin θ cos α + cos θ sin α ) = cos 2 0 1 3 o + sin 2 0 1 3 o , where θ = 2 0 1 3 o , we want to have cos α = sin α , or tan α = 1 . Here, α = 4 5 o works. Note that we can use other valid values of α . Now, we want to have R cos α = R sin α = 1 , thus R = 2 . Now, cos 2 0 1 3 o + sin 2 0 1 3 o = 2 ( sin ( 2 0 1 3 + 4 5 ) o ) = 2 ( sin 2 0 5 8 o ) .
Similarly, we want to rewrite the denominator cos 2 0 1 3 o − sin 2 0 1 3 o in the form of R cos ( θ + α ) . By using a similar method as above, c o s 2 0 1 3 o − sin 2 0 1 3 o = 2 ( sin 2 0 5 8 o ) .
Thus, tan x o = cos 2 0 5 8 o sin 2 0 5 8 o = tan 2 0 5 8 o = t a n 7 8 o . Hence, the smallest positive integer x which satisfies the equation above is 7 8 .
Correction: cos 2 0 1 3 o − sin 2 0 1 3 o = 2 ( cos 2 0 5 8 o ) , not 2 ( sin 2 0 5 8 o ) .
great!!
2013 = 5
360 + 213 = 5
360 + 180 + 33 implies tan 2013 = tan 33 .
So tan x = (1 + tan 33) /(1 - tan 33) = (tan45 + tan 33) /(1 - tan45 tan 33) = tan (45 + 33) = tan 78,
Hence x = 78 deg
Problem Loading...
Note Loading...
Set Loading...
Dividing the numerator and denominator by cos 2 0 1 3 gives us 1 − tan 2 0 1 3 1 + tan 2 0 1 3 . If we use the tangent summation formula tan ( a + b ) = 1 − tan a tan b tan a + tan b with a = 4 5 and b = 2 0 1 3 , we get tan ( 4 5 + 2 0 1 3 ) = 1 − tan 2 0 1 3 1 + tan 2 0 1 3 . Thus, our answer is 4 5 + 2 0 1 3 = 2 0 5 8 which is equivalent to 7 8 because tangent has a period of π .