Mickey Mouse birthday hat

Level pending

A B C D ABCD is a square.Let E , F E,F be the midpoint of B C , C D BC,CD respectively.Let I 1 I_{1} and I 2 I_{2} be the incentre of A D F ADF and A E C F AECF respectively.What is the value of A I 1 I 2 \angle AI_{1}I_{2} ?


The answer is 90.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Andrew Ong
Dec 15, 2013

Let r r and s s be the inradii of Δ A D F \Delta ADF and A E C F \Box AECF , and 2 t 2t be the side length of A B C D \Box ABCD . Remember that the inradius of a polygon is one half of the ratio of its area and perimeter. Hence, r = A D D F 2 A D + D F + F A = 2 t t 2 2 t + t + t 5 = ( 3 5 2 ) t s = [ A B C D ] [ A D F ] [ A B E ] A F + F C + C E + E A = 4 t 2 t 2 t 2 t 5 + t + t + t 5 = ( 5 1 2 ) t r=\frac{\frac{AD \cdot DF}{2}}{AD+DF+FA}=\frac{\frac{2t \cdot t}{2}}{2t+t+t\sqrt{5}}=(\frac{3-\sqrt{5}}{2})t \\ s=\frac{[ABCD]-[ADF]-[ABE]}{AF+FC+CE+EA}=\frac{4t^2-t^2-t^2}{t\sqrt{5}+t+t+t\sqrt{5}}=(\frac{\sqrt{5}-1}{2})t \\ Now let G G be the foot of the perpendicular from I 2 I_{2} to D C DC ; H H and I I be the foot of the perpendiculars from I 1 I_{1} to A D AD and I 2 G I_{2}G , respectively. Now notice that A H H I 1 = A D D H H I 1 = 2 t ( 3 5 2 ) t ( 3 5 2 ) t = 2 + 5 \frac{AH}{HI_{1}}=\frac{AD-DH}{HI_{1}}=\frac{2t-(\frac{3-\sqrt{5}}{2})t}{(\frac{3-\sqrt{5}}{2})t}=2+\sqrt{5} , and I 1 I I I 2 = D C r s I 2 G r = 2 t ( 3 5 2 ) t ( 5 1 2 ) t ( 5 1 2 ) t ( 3 5 2 ) t = 2 + 5 \frac{I_{1}I}{II_{2}} = \frac{DC-r-s}{I_{2}G-r} = \frac{2t-(\frac{3-\sqrt{5}}{2})t-(\frac{\sqrt{5}-1}{2})t}{(\frac{\sqrt{5}-1}{2})t-(\frac{3-\sqrt{5}}{2})t} = 2+\sqrt{5} \\ Thus, A H H I 1 = I 1 I I I 2 \frac{AH}{HI_{1}} = \frac{I_{1}I}{II_{2}} , and so Δ A H I 1 Δ I 1 I I 2 \Delta AHI_{1} \sim \Delta I_{1}II_{2} . Since Δ A H I 1 \Delta AHI_{1} is right, therefore 9 0 = H A I 1 + A I 1 H = I 2 I 1 I + A I 1 H A I 1 I 2 = 9 0 90^\circ=\angle HAI_{1}+\angle AI_{1}H=\angle I_{2}I_{1}I+\angle AI_{1}H \\ \Rightarrow \angle AI_{1}I_{2}=\boxed{90^\circ}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...