Milestone: 100,000 points! (An excuse to post a problem)

Algebra Level 5

f ( x ) = 16 x 4 + 96 x 3 + 224 x 2 + 240 x + 40 p 4 p 2 \large f(x) = 16x^4+96x^3+224x^2+240x+40p-4p^2

If p p is a real constant in the interval satisfying a < p < b a<p<b such that f ( x ) f(x) has no real roots, find a + b a+b .


The answer is 10.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

5 solutions

Sabhrant Sachan
Jun 29, 2016

Consider G ( x ) = 16 x 4 + 96 x 3 + 224 x 2 + 240 x = 16 x ( x 3 + 6 x 2 + 14 x + 15 ) G ( x ) = 16 x ( x + 3 ) ( x 2 + 3 x + 5 ) G ( x ) < 0 for x ( 3 , 0 ) It must have a global minima Put G ( x ) = 4 x 3 + 18 x 2 + 28 x + 15 = 0 x = 3 2 Note that G ( x ) is increasing for all x R , It will have only one root G ( 3 2 ) = 16 3 2 3 2 ( 9 4 3 3 2 + 5 ) = 99 For G ( x ) + k > 0 k > 99 40 p 4 p 2 > 99 p 2 10 p + 99 4 < 0 ( p α ) ( p β ) < 0 Where α and β are the roots of the equation such that α < β α < p < β α + β = 10 \quad \text{Consider } G(x) = 16x^4+96x^3+224x^2+240x = 16\cdot x(x^3+6x^2+14x+15) \\ \quad G(x) = 16\cdot x(x+3)(x^2+3x+5) \\ \quad G(x) < 0 \text{ for } x \in (-3,0) \quad \color{royalblue}{\text{It must have a global minima }} \\ \quad \text{Put } G^{'}(x)=4x^3+18x^2+28x+15 = 0 \implies x = -\dfrac{3}{2} \\ \quad \text{Note that } G^{'}(x) \text{ is increasing for all } x \in \mathbb R \quad , \text{It will have only one root } \\ \quad G\left(-\dfrac32\right) = -16\cdot \dfrac{3}{2} \cdot \dfrac{3}{2} \cdot\left( \dfrac{9}{4}-3\cdot\dfrac{3}{2}+5\right) = -99 \\ \quad \text{For } G(x)+k>0 \implies k>99 \implies 40p-4p^2 > 99 \\ \quad p^2-10p+\dfrac{99}{4} < 0 \\ \quad (p-\alpha)(p-\beta) < 0 \quad \text{ Where } \alpha \text{ and } \beta \text { are the roots of the equation such that } \alpha < \beta \\ \quad \alpha<p<\beta \\ \quad \boxed{\alpha + \beta = 10}


A nice Question + A bad Title = No like \text{ A nice Question + A bad Title} = \text{No like }

Hahaha...... :P

Hung Woei Neoh - 4 years, 11 months ago

(+1).............

Rishabh Jain - 4 years, 11 months ago
Hung Woei Neoh
Jun 29, 2016

f ( x ) = 16 x 4 + 96 x 3 + 224 x 2 + 240 x + 40 p 4 p 2 f(x) = 16x^4+96x^3+224x^2+240x+40p-4p^2

Notice that 16 x 4 = ( 2 x ) 4 16x^4 = (2x)^4 . Also notice that 96 x 3 = 12 ( 8 x 3 ) = 4 ( 3 ) ( 2 x ) 3 96x^3 = 12(8x^3) = 4(3)(2x)^3

Recall that ( m + n ) 4 = m 4 + 4 m 3 n + 6 m 2 n 2 + 4 m n 3 + n 4 (m+n)^4 = m^4+4m^3n+6m^2n^2+4mn^3+n^4 . The two terms above fit the format of this expansion.

From this, we know that we can try to separate ( 2 x + 3 ) 4 (2x+3)^4 from the function.

( 2 x + 3 ) 4 = 16 x 4 + 96 x 3 + 216 x 2 + 216 x + 81 (2x+3)^4 = 16x^4+96x^3+216x^2+216x+81

f ( x ) = 16 x 4 + 96 x 3 + 216 x 2 + 8 x 2 + 216 x + 24 x + 40 p 4 p 2 + 81 81 = ( 2 x + 3 ) 4 + 8 x 2 + 24 x + 40 p 4 p 2 81 = ( 2 x + 3 ) 4 + 8 ( x 2 + 3 x + ( 3 2 ) 2 ( 3 2 ) 2 ) + 40 p 4 p 2 81 = ( 2 x + 3 ) 4 + 8 ( x 2 + 3 x + 9 4 9 4 ) + 40 p 4 p 2 81 = ( 2 x + 3 ) 4 + 2 ( 4 x 2 + 12 x + 9 ) 18 + 40 p 4 p 2 81 = ( 2 x + 3 ) 4 + 2 ( 2 x + 3 ) 2 + 40 p 4 p 2 99 f(x)=\color{#3D99F6}{16x^4+96x^3+216x^2}+8x^2\color{#3D99F6}{+216x}+24x+40p-4p^2\color{#3D99F6}{+81}-81\\ =\color{#3D99F6}{(2x+3)^4}+8x^2+24x+40p-4p^2-81\\ =(2x+3)^4 + 8\left(x^2+3x\color{#D61F06}{+\left(\dfrac{3}{2}\right)^2-\left(\dfrac{3}{2}\right)^2}\right) + 40p-4p^2-81\\ =(2x+3)^4 + 8\left(x^2+3x+\dfrac{9}{4} - \dfrac{9}{4}\right)+40p-4p^2-81\\ =(2x+3)^4+2\left(4x^2+12x+9\right)-18+40p-4p^2-81\\ =(2x+3)^4+2(2x+3)^2+40p-4p^2-99

Now, we know that ( 2 x + 3 ) 4 + 2 ( 2 x + 3 ) 2 0 (2x+3)^4+2(2x+3)^2 \geq 0 for all real x x . For f ( x ) f(x) to have no real roots, we must let f ( x ) > 0 f(x) > 0 for all real x x

( 2 x + 3 ) 4 + 2 ( 2 x + 3 ) 2 + 40 p 4 p 2 99 > 0 40 p 4 p 2 99 > 0 4 p 2 40 p + 99 < 0 ( 2 p 9 ) ( 2 p 11 ) < 0 9 2 < p < 11 2 (2x+3)^4+2(2x+3)^2+40p-4p^2-99 > 0\\ \implies 40p-4p^2-99 > 0\\ 4p^2-40p+99<0\\ (2p-9)(2p-11)<0\\ \dfrac{9}{2} < p < \dfrac{11}{2}

a = 9 2 , b = 11 2 , a + b = 9 2 + 11 2 = 20 2 = 10 a = \dfrac{9}{2},\;b=\dfrac{11}{2},\;a+b = \dfrac{9}{2}+\dfrac{11}{2} = \dfrac{20}{2} = \boxed{10}

Nice..... (+1)

Rishabh Jain - 4 years, 11 months ago
Josh Banister
Jun 29, 2016

For significantly large 40 p 4 p 2 40p - 4p^2 then by the nature of even-ordered polynomials, we must have a f ( x ) > 0 f(x) > 0 for all x x . Let say there has to be some range where 40 p 4 p 2 > α 40p - 4p^2 > \alpha . Then by vieta's formula, the two boundaries are a , b a,b then a + b = 40 4 = 10 a+b = - \frac{40}{-4} = 10 .

Simple and clear. I like this solution.

And I really, really should've asked for b a b-a instead

Hung Woei Neoh - 4 years, 11 months ago
Kushal Bose
Jun 29, 2016

As there will be no real roots so I can consider four pairwise comples conjugate roots such as:

( a + i b ) , ( a i b ) , ( c + i d ) , ( c i d ) (a+ib) ,(a-ib) ,(c+id) ,(c-id)

products of the roots are ( a 2 + b 2 ) ( c 2 + d 2 ) (a^{2} + b^{2})(c^{2} + d^{2})

So sum of squares is always greater than zero

so 40 p p 2 16 > 0 \dfrac{40p-p^{2}}{16} > 0

which gives the inequality p ( p 10 ) < 0 p(p-10) < 0 that is p ( 0 , 10 ) p \in (0,10)

Your Answer is incorrect , 40 p 4 p 2 40p - 4p^2 must be greater than 99 99 and not 0 0 .

How did you get p 2 10 p < 0 p^2-10p<0 ? it must be a typo

Sabhrant Sachan - 4 years, 11 months ago

Log in to reply

Or maybe it's just a coincidence where an incorrect step gives the same final answer...maybe I should've asked for b a b-a instead...

Hung Woei Neoh - 4 years, 11 months ago

Based on your solution, I can use any value in the range ( 0 , 10 ) (0,10)

However, if p = 9 2 ( 0 , 10 ) p=\dfrac{9}{2} \in (0,10) , I'm getting a real root x = 3 2 x=-\dfrac{3}{2}

Are you sure you are doing it right?

Hung Woei Neoh - 4 years, 11 months ago

p=a+b=4.5+5,5= 10 This is just to show how the curve goes above x=0 to become not real. Graph by DESMOS.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...