Min Factor

Algebra Level 4

Define y = x 2 + 2 x + 3 x 2 2 x + 3 y=\dfrac{x^2+2x+3}{x^2-2x+3}

for real number x x .

If the minimum value of y y can be expressed as a + b c a+b\sqrt c where a a , b b , c c are integers and c c is not a perfect square, then find the value of a + b + c 2 \dfrac {a+b+c}{2} .


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Kenneth Tan
Sep 18, 2014

Rearrange you get ( y 1 ) x 2 2 ( y + 1 ) x + 3 ( y 1 ) = 0 (y-1)x^2-2(y+1)x+3(y-1)=0 See that this is the form of a quadratic formula, and since x x is real, its discriminant must be greater or equal to 0. 4 ( y + 1 ) 2 12 ( y 1 ) 2 0 4(y+1)^2-12(y-1)^2\geqslant0 ( y + 1 ) 2 3 ( y 1 ) 2 0 (y+1)^2-3(y-1)^2\geqslant0 y 2 4 y + 1 0 y^2-4y+1\leqslant0 The graph of the function f ( y ) = y 2 4 y + 1 f (y)=y^2-4y+1 is a parabola curving upwards and has two intersection points with the x x -axis, the x x -coordinate of the intersection points can be achieved by solving y 2 4 y + 1 = 0 y^2-4y+1=0 , where we could get solutions 2 + 3 2+\sqrt3 and 2 3 2-\sqrt3 .

Hence the minimum value of y y is 2 3 2-\sqrt3 , a = 2 a=2 , b = 1 b=-1 , c = 3 c=3 , a + b + c 2 = 2 \frac {a+b+c}{2}=2 .

I founded the maximum value

U Z - 6 years, 3 months ago

My solution is as below.
Y = 1 + 4 X X 2 2 X + 3 . Y = 4 { X 2 2 X + 3 } 1 4 X { X 2 2 X + 3 } 2 { 2 } ( X 1 ) = 0 , X 2 2 X + 3 = 2 X 2 2 X . X = ± 3 . F o r m i n i m u m X = 3 . Y = 1 + 4 ( 3 ) 3 2 ( 3 ) + 3 = 1 + 2 ( 3 ) 3 ( 3 ) = 1 2 2 ( 3 + 1 ) R a t i o n a l i s i n g d e n o m i n a t o r Y = 1 2 ( 3 1 ) 2 = 1 + 1 + ( 1 ) 3 = 2 + ( 1 ) 3 = a + b c . 1 2 ( a + b + c ) = 1 2 ( 2 1 + 3 ) = 2. Y=1+\dfrac{4X}{X^2-2X+3}. \therefore\ Y' = 4*\{X^2-2X+3\}^{-1} - 4X*\{X^2-2X+3\}^{ - 2}\{2\}(X - 1) =0,\\ \implies\ X^2-2X+3 = 2X^2 - 2X . \ \ \ \ \ \implies\ X=\pm\sqrt3.\\ For\ minimum \ X=-\sqrt3.\\ \therefore\ Y=1+\dfrac{4*( - \sqrt3)}{3- 2( - \sqrt3) + 3} =1 + \dfrac{2*( - \sqrt3)}{3- ( - \sqrt3)}=1 - \dfrac 2{2*(\sqrt3+1)}\\ Rationalising \ denominator\ \ Y=1 -\dfrac{2*(\sqrt3 - 1)} 2=1 +1 +( -1)\sqrt3=2 +( - 1)\sqrt3=a+b*\sqrt c.\\ \therefore\ \frac 1 2 *(a+b+c)=\frac 1 2*(2-1+3)= 2.
I missed the right most 1 !!

Niranjan Khanderia - 5 years ago

@Tan Kenneth Could you explain to me why must take y 2 4 y + 1 = 0 y^2-4y+1=0 ? I don't understand it :(

Dexter Woo Teng Koon - 4 years, 7 months ago

Log in to reply

Did not understand yet?

Kishore S. Shenoy - 4 years, 7 months ago
Jake Lai
Oct 12, 2014

Set d y d x = 4 ( x 2 3 ) ( x 2 2 x + 3 ) 2 = 0 \frac{dy}{dx} = -\frac{4(x^{2}-3)}{(x^{2}-2x+3)^{2}} = 0 . Solving for x x , we get x = ± 3 x = \pm\sqrt{3} .

Substituting in both values, we find x = 3 x = -\sqrt{3} gives the minimum value (second derivative test), giving y = 2 3 y = 2-\sqrt{3} . Hence, since a = 2 a = 2 , b = 1 b = -1 , and c = 3 c = 3 , a + b + c 2 = 2 \frac{a+b+c}{2} = 2 .

I'll give a short method.

Suppose I represent a quadratic as a x 2 + b x + c a , b , c ( x ) ax^2+bx+c\equiv \langle a,b,c\rangle (x)

So, considering the equation is y = a 1 , b 1 , c 1 ( x ) a 2 , b 2 , c 2 ( x ) y = \dfrac{\langle a_1,b_1,c_1\rangle (x)}{\langle a_2,b_2,c_2\rangle (x)}

And I represent 3 values Δ 1 , Δ \Delta_1, \Delta and Δ 2 \Delta_2 as Δ 1 = b 1 2 4 a 1 c 1 Δ 2 = b 2 2 4 a 2 c 2 Δ = 4 a 1 c 2 + 4 a 2 c 1 2 b 1 b 2 \Delta_1 = b_1^2-4a_1c_1\\\Delta_2 = b_2^2-4a_2c_2\\\Delta = 4a_1c_2+4a_2c_1-2b_1b_2

And the roots of the equation, Δ 2 , Δ , Δ 1 ( y ) = 0 \langle \Delta_2, \Delta,\Delta_1\rangle (y)=0 as y 1 y_1 and y 2 y_2 , with y 1 < y 2 y_1<y_2

Then for real x x , minimum of y y exists Δ 2 < 0 \iff \Delta_2<0 and y min = y 1 y max = y 2 y_{\text{min}} =\, y_1\\y_{\text{max}} =\, y_2

Also, as an extra point, range of the function f ( x ) = a 1 , b 1 , c 1 ( x ) a 2 , b 2 , c 2 ( x ) f(x) = \dfrac{\langle a_1,b_1,c_1\rangle (x)}{\langle a_2,b_2,c_2\rangle (x)}

is given as f ( x ) { R ( y 1 , y 2 ) if Δ 2 > 0 [ y 1 , y 2 ] if Δ 2 < 0 f(x) \in \begin{cases} \mathbb{R} - (y_1,y_2) & \text{if } \Delta_2>0 \\ [y_1,y_2] & \text{if } \Delta_2<0 \\ \end{cases}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...