Min + Max?

Algebra Level 5

Let x , y , z x,y,z be real numbers such that x + y + z = 3 x+y+z=3 and x y + y z + z x = 9 xy+yz+zx=-9 . If m m and M M are the minimum and maximum values of x y z xyz , respectively, find m + M m+M .


The answer is -22.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Linkin Duck
Mar 13, 2017

Let f = x y z f=xyz , then

{ x + y + z = 3 x y + y z + z x = 9 x y z = f \begin{cases} x+y+z=3 \\ xy+yz+zx=-9 \\ xyz=f \end{cases}

so x , y , z x,y,z are 3 roots of the equation t 3 3 t 2 9 t f = 0 ( 1 ) t^3-3t^2-9t-f=0 \quad (1) (by applying Viète theorem)

Let u = t 1 u=t-1 then ( 1 ) (1) becomes u 3 12 u f 11 = 0 ( 2 ) u^3-12u-f-11=0 \quad (2)

Since x , y , z x,y,z are real numbers, equation ( 2 ) (2) have 3 real roots, that comes to:

( f 11 ) 2 4 + ( 12 ) 3 27 0 27 f 5 \frac { { \left( -f-11 \right) }^{ 2 } }{ 4 } +\frac { { \left( -12 \right) }^{ 3 } }{ 27 } \le 0\Longleftrightarrow -27\le f\le 5 .

+) f = 5 f=5 , then x , y , z x,y,z are 3 roots of the equation t 3 3 t 2 9 t 5 = 0 t^3-3t^2-9t-5=0 , which are: ( x , y , z ) = ( 1 , 1 , 5 ) , ( 1 , 5 , 1 ) , ( 5 , 1 , 1 ) (x,y,z)=(-1,-1,5),(-1,5,-1),(5,-1,-1)

+) f = 27 f=-27 , then x , y , z x,y,z are 3 roots of the equation t 3 3 t 2 9 t + 27 = 0 t^3-3t^2-9t+27=0 , which are: ( x , y , z ) = ( 3 , 3 , 3 ) , ( 3 , 3 , 3 ) , ( 3 , 3 , 3 ) (x,y,z)=(-3,3,3),(3,-3,3),(3,3,-3)

Hence, m = 27 m=-27 and M = 5 M=5 , which gives m + M = 22 m+M=-22

Suppose x y z = t xyz=t

Then we se x 2 + y 2 + z 2 = 27 x^{2}+ y^{2} + z^{2} = 27 And ( x y ) 2 + ( y z ) 2 + ( x z ) 2 = 81 6 t (xy)^{2} + (yz)^{2} + (xz)^{2} = 81-6t .

Using Cauchy -Swartz : 27 ( 81 6 t ) 27(81-6t) is greater than or equal to 9 ( t ) 2 9(t)^{2} .

Solving the above quadratic inequality we get t ϵ [ 27 , 9 ] t \epsilon [-27,9] .

please comment where i am getting it wrong

Aakash Khandelwal - 4 years, 2 months ago

Log in to reply

Equality dosent hold this way, thus some other grouping of terms must be done.

Harsh Shrivastava - 4 years, 2 months ago

@Linkin Duck How you get ( f 11 ) 2 / 4 + ( 12 ) 3 / 27 < = 0 (-f-11)^2/4+(-12)^3/27<=0 ?

Dexter Woo Teng Koon - 4 years, 2 months ago

Log in to reply

Using Cardano's method, f ( x ) = x 3 + p x + q f\left( x \right) ={ x }^{ 3 }+px+q has more than 1 zero when q 2 4 + p 3 27 0 \frac { { q }^{ 2 } }{ 4 } +\frac { { p }^{ 3 } }{ 27 } \le 0 . For reference: https://en.wikipedia.org/wiki/Cubic_function

Linkin Duck - 4 years, 2 months ago

Log in to reply

@Linkin Duck Thanks !

Dexter Woo Teng Koon - 4 years, 2 months ago
Chew-Seong Cheong
Mar 23, 2017

Slightly different solution with Linkin Duck 's

Let x y z = c xyz = c , then

{ x + y + z = 3 x y + y z + z x = 9 x y z = c \begin{cases} x + y + z = 3 \\ xy+yz+zx = - 9 \\ xyz = c \end{cases}

This means that x x , y y and z z are roots of u 3 3 u 2 9 u c = 0 u^3-3u^2-9u-c = 0 . Let f ( u ) = u 3 3 u 2 9 u c f(u) = u^3-3u^2-9u-c and let us find local maximum and minimum of f ( x ) f(x) .

f ( x ) = 3 u 2 6 u 9 Equating f ( x ) = 0 3 u 2 6 u 9 = 0 u 2 2 u 3 = 0 ( u + 1 ) ( u 3 ) = 0 u = 1 , 3 \begin{aligned} f'(x) & = 3u^2 - 6u - 9 & \small \color{#3D99F6} \text{Equating }f'(x) = 0 \\ 3u^2 - 6u - 9 & = 0 \\ u^2 - 2u - 3 & = 0 \\ (u+1)(u-3) & = 0 \\ \implies u & = -1, \ 3 \end{aligned}

We note that when { u = 1 f ( 1 ) = 6 ( 1 ) 6 < 0 f ( 1 ) = 5 + c is a maximum. u = 3 f ( 1 ) = 6 ( 3 ) 6 > 0 f ( 3 ) = 27 + c is a minimum. \begin{cases} u = -1 & f''(-1) = 6(-1)-6 < 0 & \implies f(-1) = 5+c \text{ is a maximum.} \\ u = 3 & f''(-1) = 6(3)-6 > 0 & \implies f(3) = -27+c \text{ is a minimum.} \end{cases}

For all three roots x x , y y and z z to be real, 27 c 5 -27 \le c \le 5 , m = 27 \implies m = -27 , M = 5 M = 5 and m + M = 22 m+M = \boxed{-22}

Very nice approach Mr. @Chew-Seong Cheong :-)

Linkin Duck - 4 years, 2 months ago
Vilakshan Gupta
Mar 9, 2018

From x + y + z = 3 x+y+z=3 and x y + y z + z x = 9 xy+yz+zx=-9 , we get x 2 + y 2 + z 2 = 27 x^2+y^2+z^2=27 , by using the identity ( x + y + z ) 2 = x 2 + y 2 + z 2 2 ( x y + y z + z x ) (x+y+z)^2=x^2+y^2+z^2-2(xy+yz+zx) .

From this, we write x + y = 3 z x+y=3-z and x 2 + y 2 = 27 z 2 x^2+y^2=27-z^2

By using Cauchy-Schwarz Inequality , we have that x 2 + y 2 ( x + y ) 2 2 x^2+y^2 \ge \dfrac{(x+y)^2}{2} \implies 27 z 2 ( 3 z ) 2 2 27-z^2 \ge \dfrac{(3-z)^2}{2} which gives bounds on z z , that is z [ 3 , 5 ] z \in [-3,5] .

If we take minimum value of z z , that is z = 3 z=-3 , we get x = y = 3 x=y=3 , and hence x y z = 27 xyz=-27

If we take maximum value of z z , that is z = 5 z=5 , we get x = y = 1 x=y=-1 , and hence x y z = 5 xyz=5

and summing these values yields m + M = 22 m+M=\boxed{-22}


I don't know why taking the minimum and maximum values of z z , gives the answer and also I don't know why 27 -27 and 5 5 are minimum and maximum.

I just took the extreme bounds of z z , and got whatever value of x y z xyz , i assumed it to be minimum and maximum value respectively.

Please tell me how to verify why this will work. ( Also, see whether this can be done without calculus)

@Chew-Seong Cheong , @Linkin Duck

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...