Min-max To The Max!

1 x , y , z 100 max ( x , y , z ) + min ( x , y , z ) = ? \large \sum_{1 \leq x,y,z \leq 100} \max(x,y,z) + \text{min}(x,y,z) = \, ? The sum is over ordered triples of integers ( x , y , z ) (x,y,z) .


The answer is 101000000.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Otto Bretscher
Mar 31, 2016

I did it the way you did an earlier problem.

Let's assume 1 x , y , z 100 1\leq x,y,z\leq 100 throughout, so that there are 10 0 3 = 1000000 100^3=1000000 summands. Now max ( x , y , z ) + min ( x , y , z ) \sum\max(x,y,z)+\sum\min(x,y,z) = max ( x , y , z ) + ( 101 max ( 101 x , 101 y , 101 z ) ) =\sum\max(x,y,z)+\sum(101-\max(101-x,101-y,101-z)) = max ( x , y , z ) + ( 101 max ( x , y , z ) ) =\sum\max(x,y,z)+\sum(101-\max(x,y,z)) = 101 =\sum101 = 101 ( 10 0 3 ) =101(100^3) = 101000000 =\boxed{101000000}

Small Typo in the problem: They are ordered triples of integers, of course.

Arjen Vreugdenhil
Mar 30, 2016

Let med ( x , y , z ) \text{med}(x,y,z) stand for the median of the three numbers. Then max ( x , y , z ) + min ( x , y , z ) = ( x + y + z ) med ( x , y , z ) . \text{max}(x,y,z) + \text{min}(x,y,z) = (x + y + z) - \text{med}(x,y,z). Now 1 x , y , z n x = n 2 1 x n x = 1 2 n 3 ( n + 1 ) , \sum_{1\leq x,y,z\leq n} x = n^2 \sum_{1\leq x\leq n} x = \tfrac12 n^3(n+1), and likewise for y , z y, z ; so that 1 x , y , z n ( x + y + z ) = 3 2 n 3 ( n + 1 ) . \sum_{1\leq x,y,z\leq n} (x + y + z) = \tfrac32 n^3(n+1). Now for the sum of the medians. We can pair each triple ( x , y , z ) (x, y, z) with ( n + 1 x , n + 1 y , n + 1 z ) (n+1-x, n+1-y, n+1-z) ; if the median of the first triple is a a , then that of the second triple is n + 1 a n+1-a . On average, then, each half of the pair contributes 1 2 ( n + 1 ) \tfrac12(n+1) to the sum. (If n n is odd, the triple ( 1 2 ( n + 1 ) , 1 2 ( n + 1 ) , 1 2 ( n + 1 ) ) (\tfrac12(n+1), \tfrac12(n+1), \tfrac12(n+1)) remains unpaired, but this does not change our argument.) Therefore 1 x , y , z n med ( x , y , z ) = 1 x , y , z n 1 2 ( n + 1 ) = 1 2 n 3 ( n + 1 ) . \sum_{1\leq x,y,z\leq n} \text{med}(x,y,z) = \sum_{1\leq x,y,z\leq n} \tfrac12(n+1) = \tfrac12 n^3(n+1). Finally, max ( x , y , z ) + min ( x , y , z ) = ( x + y + z ) med ( x , y , z ) = 3 2 n 3 ( n + 1 ) 1 2 n 3 ( n + 1 ) = n 3 ( n + 1 ) . \sum \text{max}(x,y,z) + \text{min}(x,y,z) \\ = \sum (x + y + z) - \sum \text{med}(x,y,z) \\ = \tfrac32 n^3(n+1) - \tfrac12 n^3(n+1) = n^3(n+1). With n = 100 n=100 we find the answer 101 000 000 \boxed{101\:000\:000} .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...