Given that sin 2 x + sin 2 y = 2 1 . Let m and M denote the minimum value and maximum value, respectively, of S = tan 2 x + tan 2 y , find m + M .
This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try
refreshing the page, (b) enabling javascript if it is disabled on your browser and,
finally, (c)
loading the
non-javascript version of this page
. We're sorry about the hassle.
Sir, in the second line it should be S = sin^2x/cos^2x + sin^2y/cos^2y whereas you have written sin^2x/cos^2x + sin^2x/cos^2x... Pls correct it.... By the way nice solution sir...:) Upvoted✓
What a solution +1, got my vote.
We have to find the range of S such that the system of equations below has some solution
{ sin 2 x + sin 2 y = 2 1 tan 2 x + tan 2 y = S ( 1 )
From ( 1 ) we have:
{ cos 2 x + cos 2 y = 2 3 cos 2 x 1 + cos 2 y 1 = S + 2 ( sin 2 x + cos 2 x = sin 2 y + cos 2 y = 1 )
⟹ cos 2 x cos 2 y ( cos 2 x + cos 2 y ) = S + 2 ⟹ cos 2 x cos 2 y = 2 ( S + 2 ) 3
So, cos 2 x , cos 2 y are the roots of the equation: f ( X ) = X 2 − 2 3 X + 2 ( S + 2 ) 3 = 0
Since 0 ≤ cos 2 x ≤ 1 , 0 ≤ cos 2 y ≤ 1 , all the zeros of f ( X ) satisfy 0 ≤ X ≤ 1
To achieve that,
⎩ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎧ Δ = 9 − S + 2 2 4 ≥ 0 a f ( 0 ) = S + 2 3 > 0 2 a − b − 0 > 0 a f ( 1 ) = S + 2 3 − 1 ≥ 0 2 a − b − 1 < 0
⟺ ⎩ ⎪ ⎨ ⎪ ⎧ S + 2 9 S − 6 ≥ 0 S ≥ − 2 S + 2 − S + 1 ≥ 0 ⟺ ⎩ ⎪ ⎨ ⎪ ⎧ S ≥ 2 / 3 o r S ≤ − 2 S > − 2 − 2 ≤ S ≤ 1 ⟺ 2 / 3 ≤ S ≤ 1 .
Therefore, m = 3 2 , M = 1 , m + M = 3 5 .
Nice solution +1, gave u my vote.
Problem Loading...
Note Loading...
Set Loading...
sin 2 x + sin 2 y 2 1 − cos 2 x + 2 1 − cos 2 y 1 − cos 2 x + 1 − cos 2 y cos 2 x + cos 2 y 1 + tan 2 x 1 − tan 2 x + 1 + tan 2 y 1 − tan 2 y ( 1 − tan 2 x ) ( 1 + tan 2 y ) + ( 1 − tan 2 y ) ( 1 + tan 2 x ) ⟹ S = tan 2 x + tan 2 y = 2 1 = 2 1 = 1 = 1 = 1 = ( 1 + tan 2 x ) ( 1 + tan 2 y ) = 1 − 3 tan 2 x tan 2 y Using Weierstrass substitution
Note that sin 2 x + sin 2 y = 2 1 , ⟹ 0 ≤ sin 2 x , sin 2 y ≤ 2 1 . And that S is minimum or S = m when tan 2 x tan 2 y is maximum and S is maximum or S = M when tan 2 x tan 2 y is minimum.
Using AM-GM inequality :
tan x + tan y ⟹ tan 2 x tan 2 y ⟹ m ≥ 2 tan x tan y ≤ 1 6 ( tan x + tan y ) 4 Equality occurs when x = y = 6 π (see note). ≤ 1 6 ( 3 2 ) 4 = 9 1 = 1 − 3 × 9 1 = 3 2
Note: Equality occurs when tan x = tan y or x = y and sin 2 x + sin 2 x = 2 1 , ⟹ sin x = 2 1 or x = 6 π .
Minimum tan 2 x tan 2 y is 0, when either x = 0 or y = 0 . ⟹ M = 1 − 3 ( 0 ) = 1 .
Therefore, m + M = 3 2 + 1 = 3 5
Previous solution
sin 2 x + sin 2 y ⟹ sin 2 y ⟹ cos 2 y = 2 1 = 2 1 − sin 2 x = 1 − 2 1 + sin 2 x = 2 1 + sin 2 x
Then, we have:
S = tan 2 x + tan 2 y = cos 2 x sin 2 x + cos 2 y sin 2 y = 1 − u u + 2 1 + u 2 1 − u = 1 − u u + 1 + 2 u 1 − 2 u = 1 + u − 2 u 2 1 − 2 u + 4 u 2 = 1 + u − 2 u 2 3 − 2 ( 1 + u − 2 u 2 ) = 1 + u − 2 u 2 3 − 2 = 8 9 − 2 ( u − 4 1 ) 2 3 − 2 Let u = sin 2 x
We note that S is minimum or S = m when 8 9 − 2 ( u − 4 1 ) 2 is maximum and S is maximum or S = M when 8 9 − 2 ( u − 4 1 ) 2 is minimum. Note that sin 2 x + sin 2 y = 2 1 , ⟹ 0 ≤ sin 2 x , sin 2 y ≤ 2 1 , ⟹ 0 ≤ u ≤ 2 1 . Therefore,
m = 8 9 − 2 ( 0 ) 2 3 − 2 = 9 3 × 8 − 2 = 3 2 Note that 8 9 − 2 ( u − 4 1 ) 2 is maximum when u = 4 1
M = 8 9 − 2 ( 2 1 − 4 1 ) 2 3 − 2 = 8 9 − 8 1 3 − 2 = 1 Note that 8 9 − 2 ( u − 4 1 ) 2 is maximum when u = 2 1
⟹ m + M = 3 2 + 1 = 3 5