Min + Max? (Trigonometry)

Geometry Level 4

Given that sin 2 x + sin 2 y = 1 2 \sin ^{ 2 }{ x } +\sin ^{ 2 }{ y } =\dfrac 12 . Let m m and M M denote the minimum value and maximum value, respectively, of S = tan 2 x + tan 2 y S=\tan ^{ 2 }{ x } +\tan ^{ 2 }{ y } , find m + M m+M .

5 3 \frac { 5 }{ 3 } 8 3 \frac { 8 }{ 3 } 2 2 8 5 \frac { 8 }{ 5 }

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Chew-Seong Cheong
Mar 23, 2017

sin 2 x + sin 2 y = 1 2 1 cos 2 x 2 + 1 cos 2 y 2 = 1 2 1 cos 2 x + 1 cos 2 y = 1 cos 2 x + cos 2 y = 1 Using Weierstrass substitution 1 tan 2 x 1 + tan 2 x + 1 tan 2 y 1 + tan 2 y = 1 ( 1 tan 2 x ) ( 1 + tan 2 y ) + ( 1 tan 2 y ) ( 1 + tan 2 x ) = ( 1 + tan 2 x ) ( 1 + tan 2 y ) S = tan 2 x + tan 2 y = 1 3 tan 2 x tan 2 y \begin{aligned} \sin^2 x + \sin^2 y & = \frac 12 \\ \frac {1-\cos 2x}2 + \frac {1-\cos 2y}2 & = \frac 12 \\ 1-\cos 2x + 1-\cos 2y & = 1 \\ \cos 2x + \cos 2y & = 1 & \small \color{#3D99F6} \text{Using Weierstrass substitution} \\ \frac {1-\tan^2 x}{1+\tan^2 x} + \frac {1-\tan^2 y}{1+\tan^2 y} & = 1 \\ (1-\tan^2 x)(1+\tan^2 y) + (1-\tan^2 y)(1+\tan^2 x) & = (1+\tan^2 x)(1+\tan^2 y) \\ \implies S = \tan^2 x + \tan^2 y & = 1 - 3{\color{#3D99F6}\tan^2 x \tan^2 y} \end{aligned}

Note that sin 2 x + sin 2 y = 1 2 \sin^2 x + \sin^2 y = \frac 12 , 0 sin 2 x , sin 2 y 1 2 \implies 0 \le \sin^2 x, \sin^2 y \le \frac 12 . And that S S is minimum or S = m S=m when tan 2 x tan 2 y {\color{#3D99F6}\tan^2 x \tan^2 y} is maximum and S S is maximum or S = M S=M when tan 2 x tan 2 y {\color{#3D99F6}\tan^2 x \tan^2 y} is minimum.

Using AM-GM inequality :

tan x + tan y 2 tan x tan y tan 2 x tan 2 y ( tan x + tan y ) 4 16 Equality occurs when x = y = π 6 (see note). ( 2 3 ) 4 16 = 1 9 m = 1 3 × 1 9 = 2 3 \begin{aligned} \tan x + \tan y & \ge 2 \sqrt{\tan x \tan y} \\ \implies \tan^2 x \tan^2 y & \le \frac {(\tan x + \tan y)^4}{16} \small \color{#3D99F6} \text{Equality occurs when }x=y = \frac \pi 6 \text{ (see note).} \\ & \le \frac {\left(\frac 2{\sqrt 3} \right)^4}{16} = \color{#3D99F6} \frac 19 \\ \implies m & = 1 - 3 \times {\color{#3D99F6} \frac 19} = \frac 23 \end{aligned}

Note: Equality occurs when tan x = tan y \tan x = \tan y or x = y x=y and sin 2 x + sin 2 x = 1 2 \sin^2 x + \sin^2 x = \frac 12 , sin x = 1 2 \implies \sin x = \frac 12 or x = π 6 x = \frac \pi 6 .

Minimum tan 2 x tan 2 y {\color{#3D99F6}\tan^2 x \tan^2 y} is 0, when either x = 0 x = 0 or y = 0 y=0 . M = 1 3 ( 0 ) = 1 \implies M = 1 - 3({\color{#3D99F6}0}) = 1 .

Therefore, m + M = 2 3 + 1 = 5 3 m + M = \dfrac 23 + 1 = \boxed{\dfrac 53}


Previous solution

sin 2 x + sin 2 y = 1 2 sin 2 y = 1 2 sin 2 x cos 2 y = 1 1 2 + sin 2 x = 1 2 + sin 2 x \begin{aligned} \sin^2 x + \sin^2 y & = \frac 12 \\ \implies \sin^2 y & = \frac 12 - \sin^2 x \\ \implies \cos^2 y & = 1 - \frac 12 + \sin^2 x = \frac 12 + \sin^2 x \end{aligned}

Then, we have:

S = tan 2 x + tan 2 y = sin 2 x cos 2 x + sin 2 y cos 2 y Let u = sin 2 x = u 1 u + 1 2 u 1 2 + u = u 1 u + 1 2 u 1 + 2 u = 1 2 u + 4 u 2 1 + u 2 u 2 = 3 2 ( 1 + u 2 u 2 ) 1 + u 2 u 2 = 3 1 + u 2 u 2 2 = 3 9 8 2 ( u 1 4 ) 2 2 \begin{aligned} S & = \tan^2 x + \tan^2 y \\ & = \frac {\sin^2 x}{\cos^2 x} + \frac {\sin^2 y}{\cos^2 y} & \small \color{#3D99F6} \text{Let }u=\sin^2 x \\ & = \frac u{1-u} + \frac {\frac 12 - u}{\frac 12+u} \\ & = \frac u{1-u} + \frac {1 - 2u}{1+2u} \\ & = \frac {1-2u+4u^2}{1+u-2u^2} \\ & = \frac {3-2(1 +u-2u^2)}{1+u-2u^2} \\ & = \frac 3{1+u-2u^2}-2 \\ & = \frac 3{\color{#3D99F6}\frac 98 - 2\left(u-\frac 14\right)^2}-2 \end{aligned}

We note that S S is minimum or S = m S=m when 9 8 2 ( u 1 4 ) 2 \color{#3D99F6}\frac 98 - 2\left(u-\frac 14\right)^2 is maximum and S S is maximum or S = M S=M when 9 8 2 ( u 1 4 ) 2 \color{#3D99F6}\frac 98 - 2\left(u-\frac 14\right)^2 is minimum. Note that sin 2 x + sin 2 y = 1 2 \sin^2 x + \sin^2 y = \frac 12 , 0 sin 2 x , sin 2 y 1 2 \implies 0 \le \sin^2 x, \sin^2 y \le \frac 12 , 0 u 1 2 \implies 0 \le u \le \frac 12 . Therefore,

m = 3 9 8 2 ( 0 ) 2 2 Note that 9 8 2 ( u 1 4 ) 2 is maximum when u = 1 4 = 3 × 8 9 2 = 2 3 \begin{aligned} m & = \frac 3{\frac 98 - 2\left({\color{#3D99F6}0}\right)^2}-2 & \small \color{#3D99F6} \text{Note that } \frac 98 - 2\left(u-\frac 14\right)^2 \text{ is maximum when }u = \frac 14 \\ & = \frac {3\times 8}9 - 2 \\ & = \frac 23 \end{aligned}

M = 3 9 8 2 ( 1 2 1 4 ) 2 2 Note that 9 8 2 ( u 1 4 ) 2 is maximum when u = 1 2 = 3 9 8 1 8 2 = 1 \begin{aligned} M & = \frac 3{\frac 98 - 2\left({\color{#3D99F6}\frac 12-\frac 14}\right)^2}-2 & \small \color{#3D99F6} \text{Note that } \frac 98 - 2\left(u-\frac 14\right)^2 \text{ is maximum when }u = \frac 12 \\ & = \frac 3{\frac 98 - \frac 18} - 2 \\ & = 1 \end{aligned}

m + M = 2 3 + 1 = 5 3 \implies m+M = \dfrac 23 + 1 = \boxed{\dfrac 53}

Sir, in the second line it should be S = sin^2x/cos^2x + sin^2y/cos^2y whereas you have written sin^2x/cos^2x + sin^2x/cos^2x... Pls correct it.... By the way nice solution sir...:) Upvoted✓

Rahil Sehgal - 4 years, 2 months ago

Log in to reply

Thank you. I have changed it.

Chew-Seong Cheong - 4 years, 2 months ago

What a solution +1, got my vote.

Hana Wehbi - 4 years, 2 months ago
Linkin Duck
Mar 23, 2017

We have to find the range of S S such that the system of equations below has some solution

{ sin 2 x + sin 2 y = 1 2 tan 2 x + tan 2 y = S ( 1 ) \begin{cases} \sin ^{ 2 }{ x } +\sin ^{ 2 }{ y } =\frac { 1 }{ 2 } \\ \tan ^{ 2 }{ x } +\tan ^{ 2 }{ y } =S \end{cases}\quad \quad \quad \quad \left( 1 \right)

From ( 1 ) (1) we have:

{ cos 2 x + cos 2 y = 3 2 1 cos 2 x + 1 cos 2 y = S + 2 ( sin 2 x + cos 2 x = sin 2 y + cos 2 y = 1 ) \begin{cases} \cos ^{ 2 }{ x } +\cos ^{ 2 }{ y } =\frac { 3 }{ 2 } \\ \frac { 1 }{ \cos ^{ 2 }{ x } } +\frac { 1 }{ \cos ^{ 2 }{ y } } =S+2 \end{cases}\quad \left( \sin ^{ 2 }{ x } +\cos ^{ 2 }{ x } =\sin ^{ 2 }{ y } +\cos ^{ 2 }{ y } =1 \right)

( cos 2 x + cos 2 y ) cos 2 x cos 2 y = S + 2 cos 2 x cos 2 y = 3 2 ( S + 2 ) \Longrightarrow \quad \frac { \left( \cos ^{ 2 }{ x } +\cos ^{ 2 }{ y } \right) }{ \cos ^{ 2 }{ x } \cos ^{ 2 }{ y } } =S+2\\ \Longrightarrow \quad \cos ^{ 2 }{ x } \cos ^{ 2 }{ y } =\frac { 3 }{ 2\left( S+2 \right) }

So, cos 2 x , cos 2 y \cos ^{ 2 }{ x }, \cos ^{ 2 }{ y } are the roots of the equation: f ( X ) = X 2 3 2 X + 3 2 ( S + 2 ) = 0 f\left( X \right) ={ X }^{ 2 }-\frac { 3 }{ 2 } X+\frac { 3 }{ 2\left( S+2 \right) } =0

Since 0 cos 2 x 1 , 0 cos 2 y 1 0\le \cos ^{ 2 }{ x } \le 1 , 0\le \cos ^{ 2 }{ y } \le 1 , all the zeros of f ( X ) f\left( X \right) satisfy 0 X 1 0\le X\le 1

To achieve that,

{ Δ = 9 24 S + 2 0 a f ( 0 ) = 3 S + 2 > 0 b 2 a 0 > 0 a f ( 1 ) = 3 S + 2 1 0 b 2 a 1 < 0 \begin{cases} \Delta =9-\frac { 24 }{ S+2 } \ge 0 \\ af(0)=\frac { 3 }{ S+2 } >0 \\ \frac { -b }{ 2a } -0>0 \\ af(1)=\frac { 3 }{ S+2 } -1\ge 0 \\ \frac { -b }{ 2a } -1<0 \end{cases}

{ 9 S 6 S + 2 0 S 2 S + 1 S + 2 0 { S 2 / 3 o r S 2 S > 2 2 S 1 2 / 3 S 1. \Longleftrightarrow \begin{cases} \frac { 9S-6 }{ S+2 } \ge 0 \\ S\ge -2 \\ \frac { -S+1 }{ S+2 } \ge 0 \end{cases}\\ \Longleftrightarrow \begin{cases} S\ge 2/3\quad or\quad S\le -2 \\ S>-2 \\ -2\le S\le 1 \end{cases}\\ \Longleftrightarrow 2/3\le S\le 1.

Therefore, m = 2 3 , M = 1 , m + M = 5 3 . m=\frac { 2 }{ 3 } ,\quad M=1,\quad m+M=\boxed { \frac { 5 }{ 3 } } .

Nice solution +1, gave u my vote.

Hana Wehbi - 4 years, 2 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...