Minimum value

Geometry Level 4

In a Δ A B C \Delta ABC , find the minimum value of ( cot A 2 ) 2 ( cot B 2 ) 2 ( cot C 2 ) 2 \displaystyle \frac { \sum { { \left( \cot { \frac { A }{ 2 } } \right) }^{ 2 } } { \left( \cot { \frac { B }{ 2 } } \right) }^{ 2 } }{ { \prod { \left( \cot { \frac { C }{ 2 } } \right) } }^{ 2 } }


The answer is 1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Utkarsh Bansal
Feb 26, 2015

1 cot 2 A 2 + 1 cot 2 B 2 + 1 cot 2 C 2 = tan 2 A 2 + tan 2 B 2 + tan 2 C 2 = ( s b ) ( s c ) s ( s a ) + ( s a ) ( s c ) s ( s b ) + ( s a ) ( s b ) s ( s c ) M i n i m u m v a l u e o c c u r s a t a = b = c 3 × ( 3 a 2 a ) ( 3 a 2 a ) 3 a 2 ( 3 a 2 a ) = a 2 × a 2 a 2 × a 2 = 1 \frac { 1 }{ \cot ^{ 2 }{ \frac { A }{ 2 } } } +\frac { 1 }{ \cot ^{ 2 }{ \frac { B }{ 2 } } } +\frac { 1 }{ \cot ^{ 2 }{ \frac { C }{ 2 } } } =\tan ^{ 2 }{ \frac { A }{ 2 } } +\tan ^{ 2 }{ \frac { B }{ 2 } } +\tan ^{ 2 }{ \frac { C }{ 2 } } \\ =\frac { \left( s-b \right) \left( s-c \right) }{ s\left( s-a \right) } +\frac { \left( s-a \right) \left( s-c \right) }{ s\left( s-b \right) } +\frac { \left( s-a \right) \left( s-b \right) }{ s\left( s-c \right) } \\ Minimum\quad value\quad occurs\quad at\quad a=b=c\\ 3\quad \times \quad \frac { \left( \frac { 3a }{ 2 } -a \right) \left( \frac { 3a }{ 2 } -a \right) }{ \frac { 3a }{ 2 } \left( \frac { 3a }{ 2 } -a \right) } =\frac { \frac { a }{ 2 } \times \frac { a }{ 2 } }{ \frac { a }{ 2 } \times \frac { a }{ 2 } } =\boxed { 1 }

You must prove the equality although its quite evident.Set x = t a n ( A / 2 ) , y = t a n ( B / 2 ) , z = t a n ( C / 2 ) x=tan(A/2),y=tan(B/2),z=tan(C/2) .So its easy to show that x y + y z + z x = 1 xy+yz+zx=1 for A , B , C A,B,C form a triangle.So we are left to minimise the function x 2 + y 2 + z 2 x^2+y^2+z^2 .And we use the trivial inequality of x 2 + y 2 + z 2 > = x y + y z + z x x^2+y^2+z^2>=xy+yz+zx to get the minimum value as 1.Note that x , y , z x,y,z are positive.

Spandan Senapati - 4 years, 1 month ago

Log in to reply

Yeah! True.... legend speaking with other legend ,what am I doing here. I am a faliure

Md Zuhair - 3 years, 4 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...