Mind explosion!

Calculus Level 2

a = 2 0 1 1 + t 2 d t \large \sqrt{\color{#D61F06}{a}} ~=~ \sqrt { 2 } \sqrt { \int _{ 0 }^{ \infty }{ \frac { 1 }{ 1+{ t }^{ 2 } } } dt }

a log π 2 = ? \huge \color{#D61F06}{a}^{\log _{ \pi }{ 2 } } ~=~?


The answer is 2.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

2 solutions

Raj Rajput
Jan 9, 2016

Well explanatory, amazing

Pedro Henrique - 5 years, 5 months ago

Log in to reply

Thanks @Pedro Henrique :)

RAJ RAJPUT - 5 years, 5 months ago
Adrian Castro
Jan 9, 2016

0 1 1 + t 2 d t = l i m b 0 b 1 1 + t 2 d t \int_{0}^{\infty}\frac{1}{1+t^2}dt=lim_{b\rightarrow{\infty}}\int_{0}^{b}\frac{1}{1+t^2}dt = l i m b [ a r c t a n ( b ) a r c t a n ( 0 ) ] = π 2 =lim_{b\rightarrow{\infty}}\left [ arctan(b)-arctan(0)\right]=\frac{\pi}{2} It follows that the expression given above is equivalent to 2 π 2 = π a l o g π 2 = π l o g π 2 = 2 \sqrt{2}\sqrt{\frac{\pi}{2}}=\sqrt{\pi}\Rightarrow\;a^{log_{\pi}2}=\pi^{log_{\pi}2}=\boxed{2}

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...