Mind Your Sum

Algebra Level 4

S = 2 3 5 6 + 8 12 11 24 + + ( 1 ) n 3 n + 2 3 × 2 n + \large S=\dfrac{2}{3}-\dfrac{5}{6}+\dfrac{8 }{12}-\dfrac{11}{24}+\cdots + (-1)^n \frac{ 3n+2} { 3 \times 2^n } + \cdots

If S = a b 2 S = \dfrac{a}{b^2} , where a a and b b are positive coprime integers, find b ! a ! \dfrac{b!}{a!} .

Notation: ! ! denotes the factorial notation . For example: 8 ! = 1 × 2 × 3 × × 8 8! = 1 \times 2 \times 3 \times \cdots \times 8 .


The answer is 3.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

S = 2 3 5 6 + 2 3 11 24 + = 2 3 5 6 + 8 12 11 24 + = 3 ( 0 ) + 2 3 2 0 3 ( 1 ) + 2 3 2 1 + 3 ( 2 ) + 2 3 2 2 3 ( 3 ) + 2 3 2 3 + = n = 0 ( 1 ) n ( 3 n + 2 ) 3 2 n = n = 0 ( 1 ) n n 2 n + 2 3 n = 0 ( 1 ) n 2 n = S 1 + 2 3 S 2 \begin{aligned} S & = \frac 23 - \frac 56 + {\color{#3D99F6}\frac 23} - \frac {11}{24} + \cdots \\ & = \frac 23 - \frac 56 + {\color{#3D99F6}\frac {8}{12}} - \frac {11}{24} + \cdots \\ & = \frac {3(0)+2}{3\cdot 2^0} - \frac {3(1)+2}{3\cdot 2^1} + \frac {3(2)+2}{3\cdot 2^2} - \frac {3(3)+2}{3\cdot 2^3} + \cdots \\ & = \sum_{n=0}^\infty \frac {(-1)^n(3n+2)}{3\cdot 2^n} \\ & = \sum_{n=0}^\infty \frac {(-1)^n n}{2^n} + \frac 23 \sum_{n=0}^\infty \frac {(-1)^n}{2^n} \\ & = S_1 + \frac 23 S_2 \end{aligned}

First consider S 2 S_2 :

S 2 = n = 0 ( 1 ) n 2 n = 1 1 2 + 1 4 1 8 + 2 S 2 = 2 1 + 1 2 1 4 + 1 8 = 2 S 2 3 S 2 = 2 \begin{aligned} S_2 & = \sum_{n=0}^\infty \frac {(-1)^n}{2^n} \\ & = 1 - \frac 12 + \frac 14 - \frac 18 + \cdots \\ 2S_2 & = 2 - 1 + \frac 12 - \frac 14 + \frac 18 - \cdots \\ & = 2 - S_2 \\ 3S_2 & = 2 \end{aligned}

S 2 = 2 3 \begin{aligned} \implies S_2 & = \frac 23 \end{aligned}

Now S 1 S_1 :

S 1 = n = 0 ( 1 ) n n 2 n = 1 2 + 2 4 3 8 + 4 16 2 S 1 = 1 + 2 2 3 4 + 4 8 3 S 2 = 1 + 2 1 2 3 2 4 + 4 3 8 3 S 2 = 1 + 1 2 1 4 + 1 8 3 S 2 = S 2 = 2 3 \begin{aligned} S_1 & = \sum_{n=0}^\infty \frac {(-1)^nn}{2^n} \\ & = - \frac 12 + \frac 24 - \frac 38 + \frac 4{16} \cdots \\ 2S_1 & = - 1 + \frac 22 - \frac 34 + \frac 48 \cdots \\ 3S_2 & = - 1+ \frac {2-1}2 - \frac {3-2}4 + \frac {4-3}8 - \cdots \\ 3S_2 & = - 1 + \frac 12 - \frac 14 + \frac 18 - \cdots \\ 3S_2 & = - S_2 = - \frac 23 \end{aligned}

S 1 = 2 9 \begin{aligned} \implies S_1 & = - \frac 29 \end{aligned}

Therefore, S = S 1 + 2 3 S 2 = 2 9 + 2 3 2 3 = 2 9 = 2 3 2 S = S_1 + \dfrac 23 S_2 = - \dfrac 29 + \dfrac 23 \cdot \dfrac 23 = \dfrac 29 = \dfrac 2{3^2}

b ! a ! = 3 ! 2 ! = 3 \implies \dfrac {b!}{a!} = \dfrac {3!}{2!} = \boxed{3}

how did you get that generalization in the 3rd step?? can you please elaborate?? thank you.

mohan nayak - 4 years ago

Log in to reply

I have added a step to show. You should notice that the nominators have a common difference of 3 and the denominator, a common ratio of 2. That is how you get the formula.

Chew-Seong Cheong - 4 years ago

Log in to reply

oh, thanks.

mohan nayak - 4 years ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...