Minilog

Algebra Level 4

17 log 30 x 3 log x 5 + 20 log x 15 3 log x 6 + 20 log x 2 17\log_{30} x - 3\log_x 5 + 20 \log_x 15 - 3\log_x 6 + 20 \log_x 2

If x > 1 x>1 , find the minimum value of the expression above.


The answer is 34.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

3 solutions

Let S S be the expression. Then, we have:

S = 17 log 30 x 3 log x 5 + 20 log x 15 3 log x 6 + 20 log x 2 = 17 log x 30 + log x ( 1 5 20 ˙ 2 20 5 3 ˙ 6 3 ) = 17 log x 30 + log x ( 2 17 ˙ 3 17 ˙ 5 17 ) = 17 log x 30 + 17 log x 30 [ by AM-GM inequality ] 2 1 7 2 log x 30 log x 30 = 34 \begin{aligned} S & = 17\log_{30} x - 3 \log_x 5 + 20 \log_x 15 - 3 \log_x 6 + 20 \log_x 2 \\ & = \frac{17}{\log_x 30} + \log_x \left( \frac {15^{20} \dot{} 2^{20}} {5^3 \dot{} 6^3} \right) \\ & = \frac{17}{\log_x 30} + \log_x \left( 2^{17} \dot{} 3^{17} \dot{} 5^{17} \right) \\ & = \frac{17}{\log_x 30} + 17 \log_x 30 \quad \quad \color{#3D99F6} {[\text{by AM-GM inequality}]} \\ & \ge 2 \sqrt{\frac{17^2\log_x 30}{\log_x 30}} = \boxed{34} \end{aligned}

Ben Habeahan
Sep 3, 2015

Let T ( x ) T(x) be the answer that log equation. so from log formula, we have

T ( x ) = 17 log 30 x 3 log x ( 5 ) ( 6 ) + 20 log x ( 15 ) ( 2 ) = 17 log 30 x + 17 log x 30 = 17 ( log 30 x + log x 30 ) = 17 ( log 30 x + 1 log 30 x ) T(x)=17 \log_{30}{x}-3 \log_{x}{(5)(6)}+20 \log_{x}{(15)(2)}\\ =17 \log_{30}{x}+17 \log_{x}{30} \\ = 17( \log_{30}{x}+\log_{x}{30}) \\ = 17( \log_{30}{x}+ \frac{1}{ \log_{30}{x}})

Since x > 0 x>0 then log 30 x > 0 , 1 log 30 x > 0. \log_{30}{x}>0, \frac{1}{ \log_{30}{x}}>0.

Use AM-GM : T ( x ) 17 ( 2 ( l o g 30 x ) ( 1 log 30 x ) ) T ( x ) 34 T(x) \geq17({2 \sqrt{(log_{30}{x})(\frac{1}{ \log_{30}{x}})}}) \\ T(x) \geq{34} The minimum value 34 \boxed{34}

Saarthak Marathe
Sep 10, 2015

The last part of the problem can be done as, Let t = log x 30 t=\log _{ x }{ 30 }

Therefore, S = 17 / t + 17 t S=17/t + 17t S = 17 ( 1 / t + t ) 2 34 > 0 S=17*{(1/t + t)}^{2} -34 >0 So, we can say that, S S has minimum value of 34 34

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...