Minima and Maxima by Shivam jha

Algebra Level 3

For real numbers r r , s s , and t t such that 1 r s t 4 1 \le r \le s \le t \le 4 , determine the minimum value of

( r 1 ) 2 + ( s r 1 ) 2 + ( t s 1 ) 2 + ( 4 t 1 ) 2 \large (r-1)^2+ \left( \frac sr-1\right)^2+ \left(\frac ts-1 \right)^2+ \left(\frac 4t-1\right)^2


The answer is 0.686.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Chew-Seong Cheong
Feb 10, 2018

By Titu's lemma :

( r 1 ) 2 + ( s r 1 ) 2 + ( t s 1 ) 2 + ( 4 t 1 ) 2 1 4 ( r 1 + s r 1 + t s 1 + 4 t 1 ) 2 \begin{aligned} (r-1)^2 + \left(\frac sr -1\right)^2 + \left(\frac ts -1\right)^2 + \left(\frac 4t -1\right)^2 \ge \frac 14 \left( r-1 + \frac sr -1 + \frac ts -1 + \frac 4t -1\right)^2 \end{aligned}

By AM-GM inequality :

1 4 ( r + s r + t s + 4 t 4 ) 2 1 4 ( 4 4 4 4 ) 2 = 4 ( 2 1 ) 2 0.686 \begin{aligned} \frac 14 \left({\color{#3D99F6} r + \frac sr + \frac ts + \frac 4t} -4\right)^2 \ge \frac 14 \left({\color{#3D99F6} 4\sqrt[4]4} - 4\right)^2 = 4(\sqrt 2-1)^2 \approx \boxed{0.686} \end{aligned}

Equality occurs when r = 2 r=\sqrt 2 , s = 2 s = 2 and t = 2 2 t = 2\sqrt 2 .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...