Minima or what?

Algebra Level pending

The minimum value of 2 x 2 + 2 x y + y 2 + 2 x 3 y + 8 2x^2+2xy+y^2+2x-3y+8 for real numbers x x and y y is p p . . Then find the value of p \lfloor p \rfloor .

Notation : \lfloor \cdot \rfloor denotes the floor function .


The answer is -1.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Rinkon Saha
May 15, 2016

The given expression can be written as : : 2 x 2 + 2 x y + y 2 + 2 x 3 y + 8 = 1 2 ( 4 x 2 + 4 x y + 2 y 2 + 4 x 6 y + 16 ) = 1 2 { ( 2 x + y + 1 ) 2 + ( y 4 ) 2 1 } 1 2 \begin{aligned} 2x^2+2xy+y^2+2x-3y+8 &= \frac{1}{2}(4x^2+4xy+2y^2+4x-6y+16)\\ &=\frac{1}{2}\{(2x+y+1)^2+(y-4)^2-1\}\geq-\frac{1}{2}\end{aligned} Therefore, least value of 2 x 2 + 2 x y + y 2 + 2 x 3 y + 8 = 1 2 2x^2+2xy+y^2+2x-3y+8 = -\frac{1}{2} at x = 5 2 , y = 4 x=-\frac{5}{2}, y=4 . .

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...