Minimal Area

Geometry Level 5

An ellipse of minimum area passes through the points ( 0 , 0 ) , ( 4 , 1 ) (0,0),(4,1) and ( 2 , 5 ) (2,5) .

If the slope of the major axis of the ellipse is m m . Find ( 2 m 3 ) 2 (2m-3)^2 .


The answer is 13.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Mark Hennings
Jun 19, 2019

Consider the linear transformation T : R 2 R 2 T:\mathbb{R}^2 \to \mathbb{R}^2 such that T ( 4 1 ) = ( 6 0 ) T\binom{4}{1} = \binom{6}{0} and T ( 2 5 ) = ( 3 3 3 ) T\binom{2}{5} = \binom{3}{3\sqrt{3}} , so that T ( x y ) = ( 3 2 0 1 6 3 2 3 3 ) ( x y ) = A ( x y ) T\binom{x}{y} \; = \; \left(\begin{array}{cc} \frac32 & 0 \\ -\frac16\sqrt{3} & \frac23\sqrt{3}\end{array}\right)\binom{x}{y} \; = \; A\binom{x}{y} Then T T maps ( 0 , 0 ) (0,0) , ( 4 , 1 ) (4,1) , ( 2 , 5 ) (2,5) to the points ( 0 , 0 ) (0,0) , ( 6 , 0 ) (6,0) , ( 3 , 3 3 ) (3,3\sqrt{3}) respectively, which are the vertices of an equilateral triangle. If E \mathcal{E} is an ellipse passing through the vertices ( 0 , 0 ) (0,0) , ( 4 , 1 ) (4,1) , ( 2 , 5 ) (2,5) , then T ( E ) T(\mathcal{E}) is an ellipse passing through the vertices ( 0 , 0 ) (0,0) , ( 6 , 0 ) (6,0) , ( 3 , 3 3 ) (3,3\sqrt{3}) . If E \mathcal{E} is an ellipse with area E |\mathcal{E}| ,then T ( E ) T(\mathcal{E}) is an ellipse with area 3 E \sqrt{3}|\mathcal{E}| ,since A A has determinant 3 \sqrt{3} .

Thus the minimum area ellipse E \mathcal{E} passing through ( 0 , 0 ) (0,0) , ( 6 , 0 ) (6,0) , ( 3 , 3 3 ) (3,3\sqrt{3}) is such that T ( E ) T(\mathcal{E}) is the minimum area ellipse passing through ( 0 , 0 ) (0,0) , ( 6 , 0 ) (6,0) , ( 3 , 3 3 ) (3,3\sqrt{3}) . Now is it pretty easy to show that the minimum area ellipse passing through the vertices of an equilateral triangle is the circumcircle of the triangle. Thus we want to find E \mathcal{E} such that T ( E ) T(\mathcal{E}) is the circle ( x 3 ) 2 + ( y 3 ) 2 = 12 x 2 + y 2 6 x 2 3 y = 0 x T x ( 6 2 3 ) x = 0 \begin{aligned} (x - 3)^2 + (y - \sqrt{3})^2 & = \; 12 \\ x^2 + y^2 - 6x - 2\sqrt{3}y & = \; 0 \\ \mathbf{x}^T\mathbf{x} - (6\;\;\;\;2\sqrt{3})\mathbf{x} & = \; 0 \end{aligned} where x = ( x y ) \mathbf{x} = \binom{x}{y} . Thus E \mathcal{E} has equation ( A x ) T A x ( 6 2 3 ) A x = 0 x T A T A x ( 6 2 3 ) A x = 0 1 3 x T ( 7 1 1 4 ) x ( 8 4 ) x = 0 7 x 2 2 x y + 4 y 2 24 x 12 y = 0 \begin{aligned} (A\mathbf{x})^TA\mathbf{x} - (6\;\;\;\;2\sqrt{3})A\mathbf{x} & = \; 0 \\ \mathbf{x}^TA^TA\mathbf{x} - (6\;\;\;\;2\sqrt{3})A\mathbf{x} & = \; 0 \\ \tfrac13\mathbf{x}^T\left(\begin{array}{cc} 7 & -1 \\ -1 & 4 \end{array}\right)\mathbf{x} - (8\;\;\;\;4)\mathbf{x} & = \; 0 \\ 7x^2 - 2xy + 4y^2 - 24x - 12y & = \; 0 \end{aligned} Now the matrix 3 A T A = ( 7 1 1 4 ) 3A^TA \; = \; \left(\begin{array}{cc} 7 & -1 \\ -1 & 4 \end{array}\right) has positive eigenvalues 1 2 ( 11 ± 13 ) \tfrac12(11 \pm \sqrt{13}) with corresponding eigenvectors ( 3 ± 13 2 ) \binom{3 \pm \sqrt{13}}{-2} . The major axis of the ellipse E \mathcal{E} points along the direction of the eigenvector associated with the smaller eigenvalue, namely ( 3 13 2 ) \binom{3-\sqrt{13}}{-2} . Thus m = 2 3 13 = 2 ( 3 + 13 ) 9 13 = 1 2 ( 3 + 13 ) m \; = \; \frac{-2}{3 - \sqrt{13}} \; = \; \frac{-2(3+\sqrt{13})}{9 - 13} \; = \; \tfrac12(3 + \sqrt{13}) so that 2 m 3 = 13 2m-3=\sqrt{13} , and hence ( 2 m 3 ) 2 = 13 (2m-3)^2 = \boxed{13} .

Will you please move your solution to the other problem , so that I can delete this problem?

I feel that the other problem is more elegant.

The ellipse in the other problem has simpler and nicer properties.

Digvijay Singh - 1 year, 11 months ago

Log in to reply

I have posted a rather different solution to the other problem; it is somewhat more general. You might want to keep both problems, so that both solutions are available...

Mark Hennings - 1 year, 11 months ago

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...