Minimal Polynomial Thing 10

Algebra Level 3

Let p ( x ) p(x) be the monic minimal polynomial of

sin ( π 5 ) + cos ( π 5 ) + tan ( π 5 ) + cot ( π 5 ) + csc ( π 5 ) + sec ( π 5 ) . \sin \left(\frac{\pi }{5}\right)+\cos \left(\frac{\pi }{5}\right)+\tan \left(\frac{\pi }{5}\right)+\cot \left(\frac{\pi }{5}\right)+\csc \left(\frac{\pi }{5}\right)+\sec \left(\frac{\pi }{5}\right).

Submit the sum of the coefficients of p ( x ) p(x) .


The answer is -340.25.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Here is a bash:

Using this problem ,

sin ( π 5 ) + cos ( π 5 ) + tan ( π 5 ) + cot ( π 5 ) + csc ( π 5 ) + sec ( π 5 ) = ( 5 1 ) 2 1 5 1 + ( 5 1 ) 2 1 + 1 1 5 1 + 1 ( 5 1 ) 2 1 5 1 + 1 5 1 + 1 ( 5 1 ) 2 1 = 1 4 ( 5 5 + 62 5 + 170 3 ) \sin\left(\frac{\pi}{5}\right)+\cos\left(\frac{\pi}{5}\right)+\tan\left(\frac{\pi}{5}\right)+\cot\left(\frac{\pi}{5}\right)+\csc\left(\frac{\pi}{5}\right)+\sec\left(\frac{\pi}{5}\right)=\frac{\sqrt{\left(\sqrt{5}-1\right)^2-1}}{\sqrt{5}-1}+\sqrt{ \left(\sqrt{5}-1\right)^2-1}+\frac{1}{\frac{1}{\sqrt{5}-1}}+\frac{1}{\frac{\sqrt{\left(\sqrt{5}-1\right)^2-1}}{\sqrt{5}-1}}+\frac{1}{\sqrt{5}-1}+\frac{1}{\sqrt{\left(\sqrt{5}-1\right)^2-1}}=\frac{1}{4}\left(5\sqrt{5}+\sqrt{62\sqrt{5}+170}-3\right)

Then doing as we did in this problem , we get the answer.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...