Minimal Polynomial Thing 11

Algebra Level 3

Let p ( x ) p(x) be the monic minimal polynomial of

sin ( π 5 ) + cos ( π 5 ) + tan ( π 5 ) \sin \left(\frac{\pi }{5}\right)+\cos \left(\frac{\pi }{5}\right)+\tan \left(\frac{\pi }{5}\right)

Submit the sum of the coefficients of p ( x ) p(x) .


The answer is 4.75.

This section requires Javascript.
You are seeing this because something didn't load right. We suggest you, (a) try refreshing the page, (b) enabling javascript if it is disabled on your browser and, finally, (c) loading the non-javascript version of this page . We're sorry about the hassle.

1 solution

Here is a bash:

sin ( π 5 ) + cos ( π 5 ) + tan ( π 5 ) = 1 + sec 2 ( π 5 ) 1 sec ( π 5 ) + sec 2 ( π 5 ) 1 \sin\left(\frac{\pi}{5}\right)+\cos\left(\frac{\pi}{5}\right)+\tan\left(\frac{\pi}{5}\right)=\frac{1+\sqrt{\sec^2\left(\frac{\pi}{5}\right)-1}}{\sec\left(\frac{\pi}{5}\right)}+\sqrt{\sec^2\left(\frac{\pi}{5}\right)-1}

(squareroots may be plus or minus but this does not affect the final answer, so we assume plus)

( 1 + sec ( π 5 ) ) 2 = 1 + ( sec 2 ( π 5 ) + 2 sec ( π 5 ) ) = 1 + 1 + 2 cos ( π 5 ) cos 2 ( π 5 ) \left(1+\sec\left(\frac{\pi}{5}\right)\right)^2=1+\left(\sec^2\left(\frac{\pi}{5}\right)+2\sec\left(\frac{\pi}{5}\right)\right)=1+\frac{1+2\cos\left(\frac{\pi}{5}\right)}{\cos^2\left(\frac{\pi}{5}\right)}

But 1 + 2 cos ( π 5 ) = 4 cos 2 ( π 5 ) 1+2\cos\left(\frac{\pi}{5}\right)=4\cos^2\left(\frac{\pi}{5}\right) since

k = 0 4 e 2 π i k 5 = 0 \sum _ {k=0}^4 e^{\frac{2\pi i k}{5}}=0

which implies

1 = ( e 1 5 ( 2 i π ) + e 2 i π 5 + e 1 5 ( 4 i π ) + e 4 i π 5 ) = cos ( 4 π 5 ) + cos ( 2 π 5 ) + cos ( 2 π 5 ) + cos ( 1 5 ( 4 π ) ) = 2 cos ( 4 π 5 ) + 2 cos ( 2 π 5 ) = 2 cos ( 2 π 5 ) 2 cos ( π 5 ) = 2 ( cos ( 2 π 5 ) cos ( π 5 ) ) = 1 + 2 cos 2 ( π 5 ) cos ( π 5 ) -1=\Re\left(e^{-\frac{1}{5} (2 i\pi)}+e^{\frac{2 i\pi}{5}}+e^{-\frac{1}{5} (4 i\pi)}+e^{\frac{4 i\pi}{5}}\right)=\cos\left(\frac{4\pi}{5}\right)+\cos\left(\frac{2\pi}{5}\right)+\cos\left(\frac{2\pi}{5}\right)+\cos\left(-\frac{1}{5} (4\pi)\right)=2\cos\left(\frac{4\pi}{5}\right)+2\cos\left(\frac{2\pi}{5}\right)=2\cos\left(\frac{2\pi}{5}\right)-2\cos\left(\frac{\pi}{5}\right)=2\left(\cos\left(\frac{2\pi}{5}\right)-\cos\left(\frac{\pi}{5}\right)\right)=-1+2\cos^2\left(\frac{\pi}{5}\right)-\cos\left(\frac{\pi}{5}\right)

So ( 1 + sec ( π 5 ) ) 2 = 1 + 4 = 5 \left(1+\sec\left(\frac{\pi}{5}\right)\right)^2=1+4=5 , and sec ( π 5 ) = 5 1 \sec\left(\frac{\pi}{5}\right)=\sqrt{5}-1 . Hence,

z = sin ( π 5 ) + cos ( π 5 ) + tan ( π 5 ) = ( 5 1 ) 2 1 + ( 5 1 ) 2 1 + 1 5 1 = 1 4 ( 5 + 50 10 5 + 1 ) z=\sin\left(\frac{\pi}{5}\right)+\cos\left(\frac{\pi}{5}\right)+\tan\left(\frac{\pi}{5}\right)=\sqrt{\left(\sqrt{5}-1\right)^2-1}+\frac{\sqrt{\left(\sqrt{5}-1\right)^2-1}+1}{\sqrt{5}-1}=\frac{1}{4}\left(\sqrt{5}+\sqrt{50-10\sqrt{5}}+1\right)

Hence

64 z 4 64 z 3 336 z 2 + 176 z + 484 = ( 8 z 2 + 4 z + 22 ) 2 = ( 5 ( 6 4 z ) ) 2 = 80 z 2 240 z + 180 64 z^4-64 z^3-336 z^2+176 z+484=\left(-8 z^2+4 z+22\right)^2=\left(\sqrt{5} (6-4 z)\right)^2=80 z^2-240 z+180

So

0 = 64 ( z 4 z 3 13 z 2 2 + 13 z 2 + 19 4 ) = 64 p ( z ) 0=64\left(z^4-z^3-\frac{13 z^2}{2}+\frac{13 z}{2}+\frac{19}{4}\right)=64 p (z)

p ( 1 ) p(1) gives the answer

It is easy to check that p ( x ) p(x) is minimal. The rational root theorem easily shows that p ( x ) p(x) has no rational roots. A simple argument also shows that p ( x ) p(x) does not factor into two quadratics. So p ( x ) p(x) is irreducible.

0 pending reports

×

Problem Loading...

Note Loading...

Set Loading...